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Embedding colloidal particles in polymeric hydrogels often endows the polymer
skeleton with appealing characteristics for microfluidics and biosensing applications.
This theoretical study provides a rigorous foundation for interpreting active electrical
microrheology and electroacoustic experiments on such materials. In addition to
viscoelastic properties of the composites, these techniques sense physicochemical
characteristics of the particle–polymer interface. Wang & Hill (Soft Matter, vol. 4,
2008, p. 1048) studied the steady response of a rigid, impenetrable sphere in a
compressible hydrogel skeleton. Here, we extend their analysis to arbitrary frequencies,
showing, in general, how the frequency response depends on the particle size and
charge, ionic strength of the electrolyte and elastic and hydrodynamic characteristics
of the polymer skeleton. Our calculations capture the transition from quasi-steady
compressible to quasi-steady incompressible dynamics as the frequency passes through
the reciprocal draining time of the gel. Above the reciprocal draining time, the skeleton
and fluid move in unison, so the dynamics are incompressible and, thus, given to an
excellent approximation by the well-known dynamic electrophoretic mobility but with
the Newtonian shear viscosity replaced by a complex, frequency-dependent value.

1. Introduction
Hydrogels are an important class of soft matter that have gained widespread

application in drug delivery (Peppas et al. 2000; Qiu & Park 2001; Lin & Netters 2006),
tissue engineering (Drury & Mooney 2003; Barndl, Sommer & Goepferich 2007;
Khademhosseini & Langer 2007), advanced materials (Eddington & Beebe 2004;
Peppas et al. 2006; Chaterji, Kwon & Park 2007) and molecular separations (Wang,
Burban & Cussler 1993; Kim & Park 1998). Novel characteristics can be achieved
by immobilizing organic and inorganic colloidal particulates in the polymer skeleton.
For example, embedding gold or gold-coated silica nanoparticles into a thermally
responsive hydrogel induces light-wavelength-sensitive swelling to achieve optically
active microfluidic flow control (Sershen et al. 2005). In biosensing, immobilizing
silica nanoparticles in polyacrylamide hydrogels and applying an electric field
increase the otherwise diffusion-limited flux of uncharged macromolecules across
the composite membrane (Matos, White & Tilton 2006). This flux enhancement
can be attributed to electro-osmotic flow (Hill 2006b), and theoretical predictions
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from continuum electrokinetic theory are in good agreement with the available
experiments (Hill 2007). Other applications include delivering growth factors for
bone regeneration (Chung et al. 2007), improving the contrast of ultrasound imaging
for early tumour detection (Dayton & Ferrara 2002; Liu et al. 2006) and absorbing
infrared energy for certain cancer treatment (Loo et al. 2005). Note also that
polystyrene nanoparticles have been dispersed in neutral polyacrylamide hydrogels
to increase the storage modulus and produce mechanoelectrical effects for artificial
tactile perception and psychosensorial materials (Thévenot et al. 2007).

Advances in the development and application of hydrogel–colloid composites could
benefit from a quantitative characterization of the microstructure. This motivates the
present theoretical study, where we investigate the response of hydrogel–colloid
composites to dynamic electric fields. Our theory provides a first step towards
quantifying the electrical, hydrodynamic and mechanical interactions under dynamic
conditions. It therefore establishes a rigorous foundation for interpreting electrical
microrheology and electroacoustic experiments. We show that electrophoretic
microrheology (Mizuno, Kimura & Hayakawa 2000; Kimura & Mizuno 2007)
is appropriate at low frequencies, whereas the response to electric fields at high
frequencies is best probed using electroacoustics, namely the electrokinetic sonic
amplitude (ESA; O’Brien 1988, 1990; Hunter 1998).

In microrheology, the storage and loss moduli of soft materials, such as hydrogels
and polymer solutions, can be obtained from the frequency-dependent susceptibility
of probe particles in an external field (Ziemann, Radler & Sackmann 1994; Breuer
2005). One advantage of applying a dynamic electric field is that the viscoelastic
properties of the matrix and the physicochemical characteristics of the probe particles
could be simultaneously measured using knowledge of the amplitude and phase of
the response. Note that physicochemical properties, such as the surface charge or
ζ -potential of the inclusions, are important for electro-osmotic pumping (Yao et al.
2003; Yao & Santiago 2003; Matos et al. 2006; Hill 2007) and micromixing (Matos,
White & Tilton 2008). Another advantage of dynamic experiments is that the spectral
response provides considerably more information than a steady experiment (Russel,
Schowalter & Saville 1989; Hunter 2001).

Microrheology is often adopted for materials that are too fragile for bulk rheology
measurements (MacKintosh & Schmidt 1999; Breuer 2005; Cicuta & Donald 2007).
Passive microrheology, such as diffusing wave spectroscopy (Pine et al. 1988; Mason &
Weitz 1995) or one- and two-particle microrheology (Crocker, Valentine & Weeks
2000; Levine & Lubensky 2000), measures thermal fluctuations in the displacement
of probe particles. In active microrheology, the probe particles typically respond to
applied magnetic (Ziemann et al. 1994) or optical (Valentine, Dewalt & Ou-Yang
1996; Yamaguchi et al. 2005) forces.

Mizuno et al. (2000), Mizuno, Kimura & Hayakawa (2001, 2004) and Kimura &
Mizuno (2007) have applied electric fields in a novel heterodyne light scattering
technique to measure the dynamic electrophoretic mobility of nanoparticles in dilute
lamellar phases. Their experiments simultaneously measure the dynamic mobility
and diffusion coefficient of probe particles at frequencies from less than 1 Hz to
about 50 kHz. Microrheology techniques can also be applied to assess the surface
characteristics of colloidal particles. With optical tweezers, Galneder et al. (2001)
measured the ζ -potential of phospholipid-bilayer-coated silica beads by monitoring
electrophoretic forces. Electrical microrheology could also be applied to hydrogel–
colloid composites, perhaps allowing simultaneous characterization of the viscoelastic
and physicochemical properties of the composite microstructure.
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The upper frequency limit of electrical microrheology is about 50 kHz (Mizuno et al.
2000). Higher frequencies have been achieved with Newtonian colloidal dispersions
using electroacoustics, typically operating between 0.3 and 11 MHz (Hunter 1998).
Electroacoustics has also been successful for determining the size and ζ -potential
of colloidal particles in Newtonian electrolytes. It includes the colloid vibration
potential, arising from external sound waves, and the ESA, generated by oscillating
electric fields. These techniques are independent of the suspension optical properties
and are therefore particularly well suited for opaque and concentrated dispersions.
Modern electroacoustic theories (O’Brien 1988, 1990) connect the macroscopic electric-
field-induced pressure disturbances or sound-wave-generated electrical potentials
to the dynamic mobility and polarizability of dispersed colloidal particles.
Theoretical calculations of the dynamic electrophoretic mobility for dilute (O’Brien
1988; Mangelsdorf & White 1992; Preston, Kornbrekke & White 2005) and
concentrated (Rider & O’Brien 1993; O’Brien, Jones & Rowlands 2003; Ahualli et al.
2006) suspensions have been successfully compared with experiments (Hunter 1998).

In this work, we connect the macroscopic electroacoustic response of hydrogel–
colloid composites to the dynamic electrophoretic mobility of a single colloidal particle
embedded in a hydrogel matrix. In particular, we show that the electroacoustic
response is proportional to the mobility (velocity) of colloidal particles in hydrogels.
Accordingly, our analysis demonstrates that the electroacoustic response of a
hydrogel–colloid composite could be measured using electroacoustic instruments cur-
rently available for colloidal dispersions. More importantly, we identify the frequency
range in which the electroacoustic signal is particularly sensitive to the elasticity
of the hydrogel skeleton. This could facilitate novel experiments to monitor the
kinetics of gelation and other developments of the microstructure (Sato & Breedveld
2006; Larsen & Furst 2008). Noteworthy is that the dynamic electrophoretic mobility
at megahertz frequencies is particularly high for relatively stiff polymer skeletons,
whereas the displacement response at such frequencies is vanishingly small and,
therefore, beyond the detection limit of particle-tracking microrheology instruments.

Previous theories for the steady electric-field-induced displacement of spherical
colloidal particles in uncharged hydrogels (Hill & Ostoja-Starzewski 2008; Wang &
Hill 2008) reveal that the colloid displacement reflects a simple balance between the
electrical Coulomb force and the elastic restoring force of the gel when the particle
radius a is much smaller than the Debye screening length κ−1. This situation prevails
with small particles and low electrolyte concentrations. Otherwise, when κa � 1, the
displacement quantifies how electro-osmotic flow, arising from the diffuse layer of
counterions that envelops each inclusion, interacts with the polymer skeleton. The
latter is considerably more challenging to compute but is analytically tractable.

Wang & Hill (2008) recently showed that compressibility of the hydrogel skeleton,
as quantified by Poisson’s ratio ν, can have a significant influence on the particle
displacement Z when a charged inclusion is subjected to a steady electric field E.
When κa � 1 and � � a, for example,

Z/E = 2εoεsζE −1(1 + ν) +
εoεsζκa(1 + ν)(1 − 2ν)

2E (κ� + 1)(1 − ν)
, (1.1)

where ζ is the well-known ζ -potential; E and � are Young’s modulus and
Brinkman screening length (Brinkman 1947) of the polymer skeleton (�2 is the Darcy
permeability); and εo and εs are the vacuum permittivity and dielectric constant of the
hydrogel. For an incompressible skeleton (ν = 0.5), the second term on the right-hand
side of (1.1) vanishes and the displacement is independent of the particle size. For
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compressible skeletons with ν ∼ 0.2, however, the displacement increases linearly
with κa. Therefore, in the experimentally accessible parameter space, the particle
displacement in compressible hydrogels can be an order of magnitude larger than in
incompressible hydrogels.

Note that the apparent compressibility of a hydrogel depends on the draining
time (Schnurr et al. 1997; Hill & Ostoja-Starzewski 2008)

τd ∼ (1 − 2ν)(η/E )(a/�)2, (1.2)

where η is the fluid viscosity. If the experimental time scale τc < τd , the fluid is unable
to escape the polymer network, so the hydrogel deforms in an incompressible manner;
otherwise, the skeleton has time to drain and adopt its equilibrium (compressible)
state of strain. Consistent with scaling theory (Geissler & Hecht 1980, 1981), the
Poisson ratio of hydrogel skeletons is generally found to be in the range 0–0.25, so
the draining time is indeed finite.

In addition to the draining time, other important time scales affect the response.
For example, balancing the O(ηu∗a−1) viscous hydrodynamic stresses with the
O(μu∗τva

−1) elastic elastic stresses identifies a viscoelastic time scale τv = ημ−1.
Here, u∗ is the characteristic velocity and μ is the shear modulus of the polymer
skeleton. Moreover, balancing the O(ρf u∗τ−1

f ) inertial stresses with the foregoing

viscous stresses identifies an intrinsic fluid time scale τf = a2ρf η−1, where ρf is the
fluid density. At frequencies greater than the reciprocal viscoelastic time scale, the
dynamics are the same as in the absence of polymer; i.e. at high enough frequencies
the dynamic mobility of an inclusion in a hydrogel becomes equal to its mobility in a
Newtonian electrolyte. Note that the ion diffusion time τi =(a+κ−1)2D−1 (DeLacey &
White 1981), where D is a characteristic ion diffusivity, provides a time scale for
accessing dynamics of polarization and relaxation of the diffuse double layer, but this
has a relatively weak influence on particle dynamics. Although the foregoing time
scales are helpful for understanding qualitative aspects of the dynamics, quantitative
transitions between these characteristic times must be established by calculating the
frequency spectrum of the colloid displacement.

In this work, frequency spectra are calculated from an electrokinetic model with
the fluid and hydrogel skeleton coupled by Darcy drag. When electrical forces are
negligible, i.e. in the absence of an electric field and surface charge, the hydrodynamic
and elastic equations of motion couple, yielding a so-called two-fluid model. This
provides the response function for probe particles subjected to a known external
force. Levine & Lubensky (2001) derived an approximate response function that
neglects fluid inertia, which is reasonable at frequencies below several kilohertz.
However, much higher frequencies are important for electrophoretic microrheology
and electroacoustics. Therefore, to correctly interpret such experiments, an exact
solution of the full two-fluid model is required. An exact solution of this model
is also necessary for calculating the dynamic electric-field-induced response. More
specifically, the two-fluid model provides far-field boundary conditions for accurately
calculating the electric-field-induced particle response, which is governed by the much
more complex multi-phase electrokinetic model addressed in this work.

This paper is arranged in three parts. The first part (§ 2) solves the two-fluid
model analytically for an uncharged spherical colloid in a compressible, uncharged
hydrogel. After presenting the model and its solution, we compare the results with
the approximation of Levine & Lubensky (2001), the generalized Stokes–Einstein
relation (GSER) and the well-known solution of the unsteady Stokes equations. The
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second part (§ 3) addresses the full multi-phase electrokinetic model. After presenting
the governing equations and boundary conditions, the forces on the particle are
expressed in terms of asymptotic coefficients that reflect far-field decays of several
disturbances to the equilibrium state. In turn, these are used to calculate the dynamic
electric-field-induced particle displacement from the particle equation of motion.
We then turn to the results, examining dynamic response spectra at frequencies
from the low-frequency compressible steady limit to well beyond the ultrasonic
range. The third part (§ 4) studies an important application of the multi-phase
electrokinetic model to electroacoustic diagnostics. Following O’Brien (1988, 1990),
we establish the link between the electroacoustic response of dilute hydrogel–colloid
composite and the single-particle dynamic electrophoretic mobility. An analytical
boundary-layer analysis, valid for high frequencies, is undertaken. This permits a
comparison of numerically exact and analytical approximate calculations of the
dynamic electrophoretic mobility, focusing on how the elasticity of the polymer gel
distinguishes particle dynamics from those already established for colloids dispersed
in Newtonian electrolytes. Section 5 provides a concluding summary.

2. Two-fluid model and response function (dynamic susceptibility) for
uncharged spheres

2.1. Governing equations and boundary conditions

Consider an uncharged spherical colloid with radius a and density ρp embedded
in an uncharged hydrogel with Young’s modulus E , Poisson’s ratio ν and Darcy
permeability �2. The particle is subjected to a harmonically oscillating external force
F exp(−iωt), where ω is the angular frequency and i =

√
−1. In microrheology, such

a force arises from optical or magnetic fields, which are generally decoupled from the
fluid and polymer. The particle responds by undergoing a displacement Z exp(−iωt)
that reflects the hydrodynamic and elastic forces as determined from the fluid velocity
u and polymer displacement v. Accordingly, the response function

α(ω) ≡ Z/F (2.1)

is obtained by satisfying the particle equation of motion.
In the absence of electrical influences, the two-fluid model in the frequency domain

for harmonic dynamics comprises (e.g. Levine & Lubensky 2001)

−iωρf u = −∇p + η∇2u − η�−2(u + iωv), (2.2a)

0 = ∇ · u, (2.2b)

0 = μ∇2v + (μ + λ)∇(∇ · v) + η�−2(u + iωv), (2.2c)

where p is the pressure, and the first and second Lamé constants, λ and μ respectively,
are related to Young’s modulus E and Poisson’s ratio ν by λ=E ν/[(1+ν)(1−2ν)] and
μ =E /[2(1 + ν)]. In a frame of reference that moves with the sphere, the boundary
conditions are u = v = 0 at r = a and u → −iωY , v → Y as r → ∞, where Y = −Z.

In general, the first and second Lamé constants for the polymer skeleton are
complex and frequency dependent (Larson 1999). However, their determination
requires specific knowledge of the polymer architecture and gelation. Therefore, for
simplicity, the first and second Lamé constants are specified here to be real constants.
Note that time derivatives appear via the factor −iω; polymer inertia is neglected
because of its low concentration; and the fluid and polymer are coupled by the
Darcy drag force η�−2(u + iωv).
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2.2. Fluid velocity and polymer displacement fields

Following Markov (2005), we construct the fluid velocity and polymer displacement
fields as

u = ∇Φ1 + ∇ × Ψ 1 + ∇ × Ψ 2 − iωY , (2.3a)

v = m∇Φ1 + ∇Φ2 + M1∇ × Ψ 1 + M2∇ × Ψ 2 + Y , (2.3b)

where Φ1 and Φ2 are scalar functions; Ψ 1 and Ψ 2 are vector functions; and m,
M1 and M2 are constants. Physically, Φ1 can be attributed to the pressure in the
incompressible fluid; Φ2 represents a compressional wave; and Ψ 1 and Ψ 2 represent
shear waves.

Fluid incompressibility (2.2b) requires

∇2Φ1 = 0, (2.4)

so taking the divergence of (2.2c) and substituting (2.3a) and (2.3b) gives

∇2[∇2(mΦ1 + Φ2) + η�−2(λ + 2μ)−1Φ1 + iωη�−2(λ + 2μ)−1(mΦ1 + Φ2)] = 0. (2.5)

Next, eliminating Φ1 by setting m = −(iω)−1 gives

∇2Φ2 + k2Φ2 = 0, (2.6)

where

k2 = iωη�−2(μ + 2λ)−1. (2.7)

Taking the curl of (2.2a) and (2.2c) and substituting (2.3a) and (2.3b) gives

∇ × ∇ ×
2∑

j=1

[η∇2 + (iωρf − η�−2 − iωη�−2Mj )]Ψ j = 0, (2.8a)

∇ × ∇ ×
2∑

j=1

[μMj ∇2 + (η�−2 + iωη�−2Mj )]Ψ j = 0, (2.8b)

which can be written

∇2Ψ j + K2
j Ψ j = 0 (j = 1, 2), (2.9)

where

K2
j = (iωρf − η�−2 − iωη�−2Mj )/η (j = 1, 2). (2.10)

For Ψ 1 and Ψ 2 to be distinct, M1 and M2 must be roots of the quadratic

iωμ�−2M2
j + [iωη�−2 + μ�−2 − iωρf (μ/η)]Mj + η�−2 = 0. (2.11)

The wavenumbers k correspond to the propagation of compressional waves, and K1

and K2 are associated with shear waves. Note that all the foregoing wavenumbers can
also be obtained from the Fourier representation of the governing equations (Levine &
Lubensky 2001).

With the prevailing axisymmetric spherical geometry, the Laplace equation (2.4)
and Helmholtz equations (2.6) and (2.9) are easily solved analytically. The vector
potential Ψ j can be written Ψ j = Ψj eφ (j =1,2) (Lamb 1945; Oestreicher 1951;
Temkin & Leung 1976; Markov 2005), where eφ is one of the mutually orthogonal
unit basis vectors (er , eθ , eφ) for spherical polar coordinates (r , θ , φ) with respect
to the polar axis ez such that ez · er = cos θ . Since the fluid velocity and polymer
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displacement must be linear with respect to Y and vanish as r → ∞, we have

Φ1 = A1r
−2Y cos θ, (2.12a)

Φ2 = A2h(kr)Y cos θ, (2.12b)

Ψj = Bjh(Kjr)Y sin θ (j = 1, 2), (2.12c)

where h(x) = −x−2(x + i) exp(ix) is the spherical Hankel function of the first kind,
which represents an outward-propagating wave, and Aj and Bj (j = 1, 2) are constants
to satisfy the boundary conditions at r = a. To ensure vanishing far-field disturbances,
Im(k) > 0, Im(K1) > 0 and Im(K2) > 0.

The radial and tangential components of the fluid velocity and polymer displace-
ment are

ur =

[
−2A1r

−3 + 2

2∑
j=1

Bjr
−1h(Kjr) − iω

]
Y cos θ, (2.13a)

uθ =

{
A1r

−3 +

2∑
j=1

BjKj [(Kjr)
−1h(Kjr) + h′(Kjr)] − iω

}
(−Y sin θ), (2.13b)

vr =

[
−2mA1r

−3 + A2kh′(kr) + 2

2∑
j=1

MjBjr
−1h(Kjr) + 1

]
Y cos θ, (2.13c)

vθ =

{
mA1r

−3 + A2r
−1h(kr) +

2∑
j=1

MjBjKj [(Kjr)
−1h(Kjr) + h′(Kjr)] + 1

}

× (−Y sin θ). (2.13d )

Note that the prime on the spherical Hankel function denotes its first derivative,
and the constants Aj and Bj (j = 1, 2) are chosen to satisfy the no-slip boundary
conditions at r = a.

2.3. Force and response function

The force exerted on the sphere by the fluid and polymer is calculated from knowledge
of the fluid velocity and polymer displacement. Integrating the hydrodynamic and
elastic surface tractions over the particle surface (Landau & Lifshitz 1987) gives a
force (magnitude)

F = (4/3)πa2[−iωρf A1Y/a2 + (iωη�−2 − λk2)A2Yh(ka) + 2f1(a) + 2f2(a)]

= −4πiωρf A1Y, (2.14a)

where

f1(r) cos θ = ηur,r + μvr,r , (2.14b)

f2(r) sin θ = ηuθ,r + μvθ,r . (2.14c)

Note that the subscript ‘r ’ following commas denotes differentiation with respect to
r . Equation (2.14a) is also obtained by applying Gauss’s divergence theorem to the
volume enclosed by the particle surface and a large concentric sphere. With no-slip
boundary conditions at r = a,

A1 = a3(Θ + Γ )(2H )−1, (2.15a)
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where

Θ = ω(M1 − M2)
[
2i(β1β2)

2(b + i) − 2b2(β1 + i)(β2 + i)

+ b2
(
β2

1 + iβ1 − 1
)(

β2
2 + iβ2 − 1

)]
, (2.15b)

Γ = 2(b2 + 3ib − 3)
[
β2

1 (1 + iωM1)(β2 + i) − β2
2 (1 + iωM2)(β1 + i)

]
, (2.15c)

H = i(β1β2)
2(b2 + 2ib − 2)(M1 − M2)

+ b2
[
β2

1 (M2 − m)(β2 + i) − β2
2 (M1 − m)(β1 + i)

]
, (2.15d )

with b = ka and βj = Kja (j =1, 2).
Finally, in a stationary reference frame, also accounting for particle and fluid inertia

(Appendix D), the particle equation of motion is

F + 4πiωρf A1 Z = ω2Vp(ρf − ρp)Z, (2.16)

where Vp =(4/3)πa3 is the particle volume, and recall Z = −Y . Our exact solution of
the two-fluid model for the response function (dynamic susceptibility) is therefore

α(ω) = [ω2Vp(ρf − ρp) − 4πiωρf A1]
−1. (2.17)

To evaluate A1 in (2.17), quadratic equation (2.11) is solved for M1 and M2, which
provide wavenumbers K1 and K2 from (2.10). Next, k is obtained from (2.7). Note
that Im(k) > 0 and Im(Kj ) > 0 (j = 1, 2). After evaluating b, β1 and β2, (2.15b)–(2.15d)
give Θ , Γ and H , which provide A1 from (2.15a). Several of the foregoing steps must
be performed using multiple precision algebra (Enge, Pélissier & Zimmermann 2007;
Fousse et al. 2007; Granlund 2007). The integrals in the approximation of Levine &
Lubensky (2001) are easily evaluated using standard numerical quadrature.

2.4. Comparison of analytical exact and approximate solutions

The dynamic susceptibility α(ω) for an uncharged particle is shown in figure 1. Our
exact analytical solution (2.17) is compared with the approximation of Levine &
Lubensky (2001) and the GSER where α(ω) = [6πa(μ − iωη)]−1. The figure also
highlights several reciprocal time scales identified in the introduction. Note that
ωB = η−1(2μ + λ)(�/a)2(π2/4); ω∗ satisfies |β(ω∗)| = 1, where β(ω) = 4a2ω2ρf /[(μ −
iωη)π2]; ωd =2π(1 − 2ν)−1(E /η)(�/a)2; and ωv =2πμ/η. The first two of these were
adopted by Levine & Lubensky (2001): ωB is identified as the network compression
frequency above which the elastic network is hydrodynamically coupled with the
incompressible fluid, and ω∗ is the frequency above which fluid inertia dominates
the response. The other two reciprocal time scales, ωd and ωv , are, respectively,
proportional to the reciprocal draining time and reciprocal fluid time (§ 1). The results
with Brinkman screening length � =1 and 100 nm are representative of tightly and
loosely coupled fluid and polymer. Other parameters are summarized in table 1.
Recall that the first and second Lamé constants (μ and λ) of the hydrogel skeleton
are real constants here.

The transition from quasi-steady compressible to incompressible dynamics is evident
from the plateau seen in figure 1(a) at intermediate frequencies with � = 1 nm.
When � =100 nm, however, τd ∼ τv , so the low-frequency plateau (compressible elastic
regime) in figure 1(c) transits to the high-frequency viscous dominated regime without
an intermediate (incompressible elastic) plateau.

The real parts of the quasi-steady compressible and quasi-steady incompressible
elastic plateaus differ by at most 25 %, as predicted by Schnurr et al. (1997).
This relatively small change is often used to justify neglecting compressibility when
interpreting optical and magnetic tweezers microrheology experiments (Ziemann et al.
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Particle radius a 500 nm
Fluid viscosity η 8.904 × 10−4 Pa s
Polymer Young’s modulus E 1 kPa
Polymer Poisson’s ratio ν 0.2
Fluid density ρf 997 kgm−3

Particle density ρp 2000 kgm−3

Table 1. Parameters for the results shown in figure 1.
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Figure 1. Response function α(ω) as a function of angular frequency ω for different Brinkman
screening lengths: (a, b) �= 1 nm and (c, d ) �= 100 nm. Other parameters are listed in table 1.
The solid lines are exact solutions of the two-fluid model (2.17); the dashed lines are the
approximation of Levine & Lubensky (2001); and the dash-dotted lines are the GSER.
Several characteristic frequencies are identified (see the text for details): ωv ≈ 2.9 × 106 rad s−1

and ω∗ ≈ 8.8 × 106 rad s−1 for all panels; (a, b) ωB ≈ 12 rad s−1, ωd ≈ 47 rad s−1; and (c, d )
ωB ≈ 1.23×105 rad s−1, ωd ≈ 4.70×105 rad s−1. Equation (2.18) (not shown for clarity) recovers
the GSER (dash-dotted lines) when ω � ωd and recovers the exact solution (solid lines) when
ω � ωd .
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1994; Schnurr et al. 1997). However, if the external force is accompanied by electro-
osmotic flow, compressibility is much more significant when κa � 1 (Wang & Hill
2008). This regime is explored in the sections below, where we address the dynamic
electric-field-induced response.

The approximation of Levine and Lubensky is valid when fluid inertia can be
neglected. Accordingly, it agrees well with our exact solution when ω � ω∗. As
highlighted in the insets of figures 1(a) and 1(b), which have logarithmic axes, the
theory of Levine and Lubensky yields increasingly large relative errors at higher
frequencies. However, the absolute displacement is practically zero at such high
frequencies, so the errors are of minor concern for magnetic and optical microrheology,
but have important consequences for electroacoustics.

To capture particle and fluid inertia for incompressible skeletons at any frequency,
we note that the solution of the unsteady Stokes equations (Landau & Lifshitz
1987), with the Newtonian shear viscosity η replaced by a complex shear viscosity
η∗ = η + iμω−1, gives (Berg-Sørensen & Flyvbjerg 2004; Mizuno et al. 2008)

α−1 = −iω6πη∗a(1 + a/δ) − ω2[3πa2δρf + (4/3)πa3ρp(1 + 0.5ρf /ρp)], (2.18)

where δ =[2η∗/(ρf ω)]1/2. This connection to the unsteady Stokes equations arises
when there is zero relative motion of the fluid and polymer skeleton, i.e. u = −iωv,
which is realized at all frequencies when the polymer is incompressible and has zero
inertia. One can then add the fluid and polymer equations of motion to yield the
unsteady Stokes equations with shear viscosity η∗. As expected, (2.18) agrees with
our (2.17) (solid lines in figure 1) at frequencies above the reciprocal draining time
and with the GSER (dash-dotted lines in figure 1) at frequencies below the reciprocal
draining time.

Our exact solution (2.17) of the two-fluid model – valid for compressible skeletons
at all frequencies – is required to solve the full multi-phase electrokinetic model. As
described in Appendix B, the two-fluid model provides far-field boundary conditions
for the fluid velocity and polymer displacement fields; it also provides the basis of an
analytical approximation for the high frequencies encountered in electroacoustics.

3. Multi-phase electrokinetic model and electric-field-induced response
In general, the particle surface charge is screened by a diffuse layer of electrolyte

ions and counterions, whose bulk concentration determines the Debye length κ−1 and
surface potential ζ for a given surface charge density σ . However, when κa � 1, the
external force on the particle equals the bare Coulomb force F = σ4πa2 E, and there
is vanishing electro-osmotic flow. Therefore, the ratio of the particle displacement to
the electric field strength under these conditions is simply

Z/E = σ4πa2α(ω). (3.1)

Hydrogel compressibility affects Z/E by at most 25 %, which is evident from scaling
analysis (Schnurr et al. 1997) and the approximate response function of Levine &
Lubensky (2001). When κa � 1, however, an electrokinetic model is necessary to
capture the influence of electro-osmotic flow and polarization of the diffuse double
layer, which together modify the phase and amplitude of the effective Coulomb
force on the particle. Electrical influences may also impart a so-called electroviscous
resistance to particle dynamics, so, in general, α(ω) above also depends on the particle
charge and electrolyte concentration.
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3.1. Model equations and boundary conditions

Our multi-phase electrokinetic model augments the two-fluid model in § 2 with an
electrical body force on the fluid, a Poisson equation linking the electrostatic potential
to the free-charge density and electrolyte-ion conservation equations to account for
ion diffusion, electromigration and convection. With harmonic time dependence, e.g.
an applied electric field E exp(−iωt), the full electrokinetic model is

0 = εoεs∇2ψ +

N∑
j=1

njzj e, (3.2a)

−iωnj = −∇ · j j , (3.2b)

−iωρf u = η∇2u − ∇p − η�−2(u + iωv) −
N∑

j=1

njzj e∇ψ, (3.2c)

0 = ∇ · u, (3.2d )

0 = μ∇2v + (λ + μ)∇(∇ · v) + η�−2(u + iωv), (3.2e)

with ion fluxes

j j = nj u − Dj ∇nj − zjenjDj (kT )−1∇ψ. (3.2f )

Note that ψ is the electrostatic potential and nj is the concentration of the j th ion
species with valence zj and diffusivity Dj . The fundamental charge and thermal energy
are e and kT , respectively, and the diffusivities of the N ion species are related to
their limiting conductances Λj (Speight 2005) by Dj = (kT Λj )/(e

2|zj |). Note that the

Debye length is κ−1 =
√

kT εsεo/(2Ie2), where the ionic strength I = (1/2)
∑N

j =1 z2
jn

∞
j

with n∞
j the bulk concentration of the j th ion species.

Among the principal assumptions underlying this model are a linearly elastic
hydrogel skeleton that is isotropic and homogeneous (Hill & Ostoja-Starzewski 2008)
and does not hinder ion diffusion and electromigration (Hill 2006b). Furthermore,
the colloidal particle is assumed to be rigid, and displacement and velocity fields are
assumed to be continuous across the particle–hydrogel interface. As suggested by
mode-coupling theory for charged colloidal dispersions (Nägele 2003), a continuum
theory may be too crude an approximation for particles smaller than the polymer
mesh length. Moreover, polymer depletion or concentration at the particle–polymer
interface will modulate the effective elastic properties of the skeleton, thereby changing
the amplitude and phase of the response. Such influences have been considered by
Levine & Lubensky (2000) for the purely mechanical response but are beyond the
scope of the present study addressing the electrical response.

In a reference frame moving with the particle, no-slip boundary conditions at the
particle surface require u = v = 0 at r = a. Other possibilities such as slipping or the
opening of a crack at the particle–hydrogel interface significantly complicate the
problem and are not pursued here. An impenetrable and non-conducting particle
demands ψ> = ψ<, εpεo(er · ∇<)ψ − εsεo(er · ∇>)ψ = σ and j j · er = 0, where εp is the
particle dielectric constant, er is the outward unit normal and the subscripts ‘<’ and
‘>’ distinguish the particle and hydrogel sides of the interface, respectively.

Far from the particle, disturbances to the equilibrium electrostatic potential, ion
concentrations, fluid velocity and polymer displacement vanish. Therefore, as r →
∞, ψ → −E · r , nj → n∞

j , u → iωZ and v → −Z. Note that these boundary
conditions cannot be directly applied in numerical computations because the slowly
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decaying, oscillating disturbances yield numerical instabilities. We remedy this with
the asymptotic analysis detailed in Appendix B.

3.2. Solution methodology

The equations above are solved by linearizing perturbations from an equilibrium
base state governed by the nonlinear Poisson–Boltzmann equation. This methodology
is widely adopted for calculating the steady and dynamic electrophoretic mobilities
of colloidal particles (O’Brien & White 1978; Mangelsdorf & White 1992; Hill,
Saville & Russel 2003a) and a variety of other electrokinetic phenomena. The
perturbation approach is accurate when the applied electric field is sufficiently weak,
i.e. |E| � κζ . Under these conditions, which are often achieved in experiments, the
methodology is much more computationally efficient than solving the full nonlinear
model (Masliyah & Bhattacharjee 2006).

The equilibrium base state (ψ0 and n0
j ) prevails in the absence of external stimuli.

In this work, perturbations to equilibrium are induced by a far-field translation of the
hydrogel Y = −Z and external electric field E. Accordingly, ψ and nj are constructed
as ψ = ψ0+ψ ′ = ψ0 − E · r +ψ ′′ and and nj = n0

j +n′
j , where linearity and axisymmetry

demand n′
j = n̂j (r)X · er and ψ ′′ = ψ̂(r)X · er , with X ∈ {Y , E}. Note that fluid velocity

u and polymer displacement v are perturbed quantities whose constructions are given
below. It is expedient to linearize the perturbations and construct the solution by
superposing two sub-problems with either Y = 0 or E = 0 and the particle fixed at the
origin.

As is well known, the equilibrium ion concentrations are n0
j = n∞

j exp[−zjeψ
0/(kT )],

and the Poisson–Boltzmann equation with spherical symmetry is

εoεsL0ψ
0 = −

N∑
j=1

zjn
0
j e, (3.3)

with boundary conditions ψ0 = ζ or εsεoψ
0
,r = −σ at r = a and ψ0 → 0 as r → ∞. We

solve (3.3) using a standard finite-difference method with an adaptive grid (Hill et al.
2003a) that ensures ψ0 decays as exp(−r)/r when κ(r − a) � 1 (Verwey & Overbeek
1948; Shkel, Tsodikov & Record Jr 2000).

Following our earlier work (Wang & Hill 2008), the fluid velocity and compressible
polymer displacement are constructed as

u = ∇ × ∇ × [f (r)X] − iωY

= −iωY + (−r−1f,r − f,rr )X + (−r−1f,r + f,rr )X · er er , (3.4)

v = g1(r)X + g2(r)X · er er + Y , (3.5)

so taking the curl of the fluid momentum equation (3.2c) gives

−iωρf L1f,r = ηL2f,rrr − η�−2[L1f,r − iω(g1,r − r−1g2)]

−
N∑

j=1

zjer
−1{n̂jψ

0
,r − n0

j,r [ψ̂ − r(E/X)]}, (3.6)

where

L0(·) = (·),rr + 2r−1(·),r , (3.7a)

L1(·) = (·),rr + 2r−1(·),r − 2r−2(·), (3.7b)

L2(·) = (·),rr + 4r−1(·),r − 4r−2(·). (3.7c)
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The X and X · er er components of the polymer momentum equation (3.2e) are

0 = μ(g1,rr + 2r−1g1,r + 2r−2g2) + (μ + λ)(r−1g1,r + r−1g2,r + 2r−2g2)

+ η�−2(−f,rr − r−1f,r + iωg1), (3.8)

0 = μ(g2,rr + 2r−1g2,r − 6r−2g2) + (μ + λ)(g1,rr + g2,rr − r−1g1,r + r−1g2,r − 4r−2g2)

+ η�−2(f,rr − r−1f,r + iωg2), (3.9)

and the perturbed Poisson equation (3.2a) and ion-conservation equations (3.2b) are

εoεsL1ψ̂ = −
N∑

j=1

zj n̂j e, (3.10)

−iωn̂j = n0
j,r [2r−1f,r + iω(Y/X)] + Dj L1n̂j + zjeDj (kT )−1

×{n0
j,r [ψ̂,r − (E/X)] + ψ0

,r n̂j,r + n0
j L1ψ̂ + n̂j L0ψ

0}. (3.11)

The boundary conditions for ψ̂ and n̂j at r = a are

ψ̂,r − (E/X) − (εp/εs)[ψ̂/a − (E/X)] = 0, (3.12a)

zjeDj (kT )−1{n̂jψ
0
,r + n0

j [ψ̂,r − (E/X)]} + Djn̂j,r = 0, (3.12b)

and no slip at r = a requires

f,r = −(iωa/2)(Y/X) and f,rr = −(iω/2)(Y/X), (3.12c)

g1 = −(Y/X) and g2 = 0. (3.12d )

Finally, vanishing of the disturbances as r → ∞ requires

ψ̂ → 0 and n̂j → 0, (3.13a)

f,r → 0 and f,rr → 0, (3.13b)

g1 → 0 and g2 → 0. (3.13c)

3.3. Forces and dynamic electrical response

The force and particle response are written in terms of asymptotic coefficients that
characterize the far-field decays of the fluid velocity and polymer displacement. Since
the electrical body force vanishes as r → ∞,

uX → −iωY + CXr−3 X − 3CXr−3 X · er er , (3.14a)

vX → Y + ZXr−3 X − 3ZXr−3 X · er er , (3.14b)

where X ∈ {E, Y}. Recall that (3.14a) and (3.14b) emerge from the two-fluid model
presented in § 2. Since the fluid and polymer skeleton move together in the far field,
their respective asymptotic coefficients CX and ZX are related by ZX = −(iω)−1CX .
Accordingly, the force and particle displacement can be written in terms of CX alone.

Electrical, hydrodynamic and elastic forces are exerted on the particle in the E and
Y sub-problems. The corresponding stress tensors are the Maxwell stress

T m = εoεs∇ψ∇ψ − (1/2)εoεs(∇ψ · ∇ψ)I , (3.15)

Newtonian hydrodynamic stress

T f = −pI + η[∇u + (∇u)T ] (3.16)

and linear elastic stress

T e = λ(∇ · v)I + μ[∇v + (∇v)T ], (3.17)

where I is the identity tensor.
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The total force is

FX =

∫
r=a

(T m + T f + T e) · er dA, (3.18)

so applying Gauss’s divergence theorem to a volume that encloses the particle surface
and a large concentric sphere with radius r → ∞ gives

FX =

∫
r→∞

(T m + T f + T e) · er dA −
∫ r→∞

r=a

∇ · (T m + T f + T e) dV, (3.19)

where

∇ · T m = −ρe∇ψ, (3.20a)

∇ · T f = −iωρf u + η�−2(u + iωv) + ρe∇ψ, (3.20b)

∇ · T e = −η�−2(u + iωv), (3.20c)

and ρe =
∑N

j =1 njzje is the free-charge density. Accordingly, the force is

FX =

∫
r→∞

(T m + T f + T e) · er dA + iωρf

∫ r→∞

r=a

u dV

=

∫
r→∞

(T m + T f + T e) · er dA

+ iωρf

[∫
r→∞

(u · er )r dA −
∫

r=a

(u · er )r dA

]
. (3.21)

Note that the first integral on the left-hand side of (3.21) is finite only if the stress
decays as r−2. The only such term involves the fluid pressure, so with the no-slip
boundary conditions at r = a we find

FX = −
∫

r→∞
per dA + iωρf

∫
r→∞

(u · er )r dA. (3.22)

Substituting the velocity from (3.14a) into the second integral on the right-hand
side of (3.22) gives∫

r→∞
(u · er )r dA = −(8/3)πCX X − iω

∫
r→∞

(Y · er )r dA, (3.23)

and as r → ∞,

p →
∫ r

[η∇2u + iωρf u − η�−2(u + iωv) − ρe∇ψ] · erdr ′. (3.24)

Since ∇2u ∼ r−5 and ρe∇ψ decays exponentially, the r−2 decaying and growing
contributions give

p = [iωρf CXr−2 − η�−2(CX + iωZX)r−2](X · er ) + ω2ρf r(Y · er )

= iωρf CXr−2(X · er ) + ω2ρf r(Y · er ), (3.25)

and finally, the force on the particle is

FX = −4πiωρf CX X . (3.26)

Note that the radially growing term in (3.25) cancels the surface integral on the
right-hand side of (3.23) when evaluating the force. Equation (3.26) has the same
form as for a Newtonian fluid and is valid for both compressible and incompressible
polymer skeletons.
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Time scale Value (s)

Draining τd ∼ (η/E )(a/�)2 ∼10−2

Ion diffusion τi ∼ a2/Dj ∼10−3

Viscoelastic τv ∼ η/μ ∼10−6

Fluid (momentum diffusion) τf ∼ ρf a2/η ∼10−6

Table 2. Summary of the characteristic time scales (reciprocal frequencies) used to interpret the
spectral response functions. Representative values are listed for the dimensional parameters:
a ∼ 1 μm, � ∼ 10 nm, E ∼ μ= 1 kPa, ρf ∼ 103 kgm−3, η ∼ 10−3 Pa s, Dj ∼ 10−9 m2 s−1. At

frequencies below (above) τ−1
d the hydrogel responds in a compressible (incompressible)

manner; and at frequencies below (above) τ−1
v the particle dynamics reflects the hydrogel

elasticity (viscosity). See the text for other details.

Superposing the E and Y problems with Y = −Z and correctly accounting for fluid
and particle inertia (Appendix D) give

−4πiωρf CE E + 4πiωρf CY Z = ω2Vp Z(ρf − ρp), (3.27)

where Vp = (4/3)πa3 is the particle volume. Accordingly, the dynamic electric-field-
induced response is

Z/E = iCE/[iCY + ωa3(ρp − ρf )/(3ρf )]. (3.28)

3.4. Numerical solutions of the full electrokinetic model

The electrokinetic model is solved numerically by adopting κ−1, u∗ = εsεo(kT /e)2/(ηa)
and ηu∗/μ = εsεo(kT /e)2/(μa) as the characteristic scales for length, fluid velocity and
polymer displacement, respectively; and similar to (3.28), the dimensional response
Z/E is obtained from the dimensionless asymptotic coefficients ĈE and ĈY as

Z/E =
iĈEεoεs(kT /e)/(μκa)

iĈY − (ωη/μ)(κa)3(ρf − ρp)/(3ρf )
. (3.29)

Separate computer programs were written to calculate the response for compressible
and incompressible hydrogels. Asymptotic coefficients are extracted from the far-field
decay of the perturbations, and the dynamic response Z/E is obtained from the
superposition leading to (3.28) or (3.29). Note that the asymptotic analysis detailed
in Appendix B provides Z/E at frequencies from as low as 0.01 Hz to higher than
1 GHz. An algorithmic description of the computational methodologies and external
libraries used in our programs is provided in Appendix E.

For a given electrolyte, a dimensionless response Z∗ can be written in terms of six
principal independent dimensionless parameters:

E eZ/(EεoεskT ) = Z∗[ζe/(kT ), κa, κ�, ωη/E , ρf E a2/η2, ρp/ρf ]. (3.30)

The last three dimensionless arguments arise from the dynamics; i.e. the steady
response is independent of these dimensionless groups. Nevertheless, to maintain a
close connection to experiments, we present the results in dimensional form. It follows,
for example, that the dimensional displacement Z is inversely proportional to Young’s
modulus E at low frequencies. In particular, we discuss the results in terms of the
characteristic time scales discussed in the introduction. For convenient reference, these
are summarized in table 2 with their representative order of magnitude for a specific
set of representative dimensional variables. Note that Young’s modulus E , Brinkman
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Figure 2. Representative frequency spectrum of Z/E for a charged colloidal sphere embedded
in an uncharged, compressible electrolyte-saturated hydrogel: NaCl at T =298 K; a = 500 nm;
κa = 500; −ζe/(kT ) = 3; �= 5 nm; ρp = 1050 kg m−3, ν = 0.2; and E = 800 Pa. The solid and
dashed lines are the real and imaginary parts of Z/E from numerical solutions of the full
multi-phase electrokinetic model; and the dash-dotted lines are the formula of Wang & Hill
(2008) (1.1) with ν = 0.2 and ν = 0.5.

screening length � and particle size a can vary by several orders of magnitude,
imparting equally significant changes in the time scales and, thus, the spectral response.

A representative spectrum of Z/E for a colloidal particle in a compressible hydrogel
is presented in figure 2. The computations are validated, in part, by the steady
boundary-layer formula (1.1) for compressible and incompressible hydrogels (Hill &
Ostoja-Starzewski 2008; Wang & Hill 2008). Note that the response (real part)
undergoes a distinct transition from quasi-steady compressible to quasi-steady
incompressible elastic plateaus as the frequency passes through the reciprocal draining
time τ−1

d ≈ 150 Hz. The transition spans several frequency decades, with the steady
compressible asymptote realized at extremely low frequencies ∼10−2 Hz. Note that the
small discrepancy between the steady (horizontal line) and low-frequency dynamic
asymptote in figure 2 is due to the boundary-layer approximation (1.1), which, in this
example, is about 2 % smaller than the numerically exact result (Wang & Hill 2008).

The quasi-steady compressible and incompressible elastic responses differ by an
order of magnitude here. At higher frequencies, |Z/E| becomes vanishingly small
because the viscous and inertial stresses dominate the response. Note that in active
microrheology, most experimentally accessible frequencies are in transition from
the quasi-steady compressible to incompressible elastic regimes, so the dynamic
calculations are essential for correctly interpreting such experiments. For the hydrogel–
colloid composite in figure 2, an applied electric field E = 20 V cm−1 with frequency
ω/(2π) = 1 Hz induces a particle displacement with amplitude Z ≈ 4 nm that could
be resolved using back-focal-plane interferometry (Allersma et al. 1998). The sub-
nanometre displacements at higher frequencies ( � 10 kHz) could be detected by
correlating the oscillatory forcing and response using a lock-in amplifier (e.g. Mizuno
et al. 2008). At ultrasonic frequencies, the particle velocity −iωZ in response to an
oscillatory electric field can be measured using electroacoustics (e.g. O’Brien 1988).
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Figure 3. Comparison of Z/E for a compressible hydrogel with the response (Z/E)∗ =
μd

∗iω−1 for incompressible dispersions. The parameters are the same as in figure 2. The
solid and dashed lines are the real and imaginary parts of Z/E from numerical solutions of
the full multi-phase electrokinetic model. The dash-dotted and dash-double-dotted lines are
the real and imaginary parts of (Z/E)∗ calculated from the MPEK software package for a
Newtonian electrolyte (Hill et al. 2003a). The dotted and dot-double-dashed lines are the real
and imaginary parts of (Z/E)∗ from O’Brien’s dynamic electrophoretic mobility formula (3.31)
evaluated with a complex viscosity η∗ = η + iμω−1.

The high-frequency regime is examined in figure 3, where the absolute values of the
real and imaginary parts of Z/E for particles in a hydrogel (solid and dashed lines) are
compared with their counterparts (Z/E)∗ = μd

∗iω−1 for the same particles dispersed
in the electrolyte without polymer. Accordingly, quantities with the superscripts ‘∗’
are from numerical solutions of the standard electrokinetic model (Mangelsdorf &
White 1992), including particle and fluid inertia at any frequency (Hill, Saville &
Russel 2003b), as calculated by the MPEK software package (Hill et al. 2003a). Also
shown in the figure are the real and imaginary parts of (Z/E)∗ from O’Brien’s dynamic
electrophoretic mobility formula, valid at high frequencies with κa � 1 (O’Brien 1988):

μd
∗ =

2εsεoζ

3η
(1 + f )G(ωa2ρf /η). (3.31)

Note that we have evaluated (3.31) by replacing the Newtonian fluid viscosity η

with a complex shear viscosity η∗ = η + iμω−1. The functions f (frequency-dependent
electrostatic dipole strength) and G(ωa2ρf /η) in (3.31) are available in O’Brien
(1988).

Important characteristic frequencies in § 1, including the reciprocal draining time
τ−1
d , reciprocal viscoelastic time τ−1

v and reciprocal fluid time τ−1
f , are identified

in figure 3. Again, the transition from quasi-steady compressible to quasi-steady
incompressible elastic dynamics is clearly evident as the frequency passes through
τ−1
d ≈ 150 Hz. More importantly, the figure highlights the transition from quasi-

steady elastic to viscous dynamics as the frequency passes through τ−1
v ≈ 370 kHz.

At frequencies beyond τ−1
f ≈ 3.6 MHz, both the real and imaginary parts of Z/E

equal their (Z/E)∗ counterparts. Therefore, it is only at megahertz frequencies here
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Figure 4. Frequency spectra of Z/E for various Poisson ratios ν =0, 0.1, 0.2, 0.3, 0.4 and 0.5
with a fixed shear modulus μ= 0.5E /(1 + ν) ≈ 333 Pa. All other parameters are the same as in
figure 2. The solid and dashed lines are the real and imaginary parts of Z/E from numerical
solutions of the full multi-phase electrokinetic model.

that the electroacoustic response of the hydrogel composite is the same as for its
respective colloidal dispersion (Hunter 1998; O’Brien 1988). At lower frequencies, the
electroacoustic response probes the shear modulus of the polymer skeleton and the
size and charge of the inclusions.

O’Brien’s formula (3.31) is valid for thin double layers and high frequencies. Under
these conditions, it agrees with numerical solutions of the standard electrokinetic
model. As expected, the frequency response obtained from the dynamic electrophoretic
mobility with viscosity η agrees with our full multi-phase electrokinetic model at
frequencies above the reciprocal viscoelastic time τ−1

v . In this regime, the fluid stresses
are O(ωημ−1) greater than the elastic stresses, so the response becomes independent
of the polymer shear modulus μ. Noteworthy is that replacing the fluid viscosity η

in the standard electrokinetic model (evaluated using O’Brien’s formula here) with
complex viscosity η∗ extends the frequency range down to the reciprocal draining
time τ−1

d when τ−1
d < τ−1

v . Accordingly, the electrophoretic mobility evaluated with a
complex viscosity provides an excellent approximation under conditions at which the
fluid and polymer are tightly coupled. This is not the case for compressible skeletons
at frequencies below τ−1

d , however. For example, when κa � 1 and � � a, evaluating
the particle displacement using the steady electrical force (Wang & Hill 2008)

FE = πaζεoεs E
4(1 − ν)(κ� + 1) + (1 − 2ν)

(5/6 − ν)(κ� + 1)
(3.32)

and the dynamic susceptibility α(ω) provided in § 2 yields an ostensibly incorrect
response at any finite frequency. In general, this is because the electrical force FE

is sensitive to the dynamic electro-osmotic flow and polarization. Note also that
α(ω) from § 2 does not include electroviscous effects, which contribute to FZ in the
electrokinetic model.

Having identified several qualitative features of a typical frequency spectrum, let us
now explore the parameter space. First, figure 4 shows how Poisson’s ratio, increasing
from ν =0 to ν = 0.5 with fixed shear modulus μ ≈ 0.333 kPa, affects the response.
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Figure 5. Frequency spectra of Z/E for various Young’s moduli E = 0.1, 1 and 10 kPa with
Poisson ratio ν = 0.2. All other parameters are the same as in figure 2. The solid and dashed
lines are the real and imaginary parts of Z/E from numerical solutions of the full multi-phase
electrokinetic model.

Note that the spectrum for the incompressible hydrogel (ν = 0.5) was calculated
using the methodology detailed in Appendix A. Comparing the spectra for ν = 0.5
and ν < 0.5 provides an important consistency check of our numerics, since the
methodologies for compressible and incompressible skeletons are independent. In
general, Z/E can vary with Poisson’s ratio by up to an order of magnitude at
frequencies below the reciprocal draining time. At these frequencies, the response is
very sensitive to Poisson’s ratio as ν → 0.5. At higher frequencies, however, Z/E is
independent of Poisson’s ratio with fixed shear modulus μ because the compressible
skeleton is hydrodynamically coupled with the incompressible fluid.

Next, figure 5 shows how Young’s modulus affects the response spectrum. As
expected from the steady displacement (Hill & Ostoja-Starzewski 2008; Wang &
Hill 2008), the response is indeed inversely proportional to the elastic modulus at
frequencies below the reciprocal viscoelastic time τ−1

v . In addition, the elastic modulus
changes both the draining and viscoelastic times. Accordingly, the spectra in figure 5
overlap at frequencies below τ−1

v when multiplying Z/E by E and dividing the
frequency by E . Noteworthy from the perspective of electroacoustics is that the real
part of Z/E (solid lines) is sensitive to E at ultrasonic frequencies, whereas the
imaginary part (dashed lines) is practically independent of E .

The influences of the scaled ζ -potential ζe/(kT ) and scaled reciprocal double-
layer thickness κa on Z/E are examined in figure 6. Note that our computational
methodology is stable and accurate for all κa � 1. When κa � 1, however, electro-
osmotic flow is extremely weak, so the dynamic response can be approximated by
(3.1). Situations of practical significance most often occur when κa � 1, so figure 6
presents spectra for six values of κa in the range 1–500. When κa is large, electro-
osmotic flow influences the particle displacement in the quasi-steady compressible
elastic regime in the same manner as for steady electric fields (Wang & Hill 2008).
Consequently, the displacement at frequencies below the reciprocal draining time
increases with κa relative to the respective incompressible elastic plateaus.
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Figure 6. Frequency spectra of Z/E for various scaled ζ -potentials −ζe/(kT ) = 1, 2, 4, 6 and
8; and various scaled reciprocal double-layer thicknesses κa = 1, 5, 10, 50, 100 and 500: KCl
at T = 298 K; a/�= 100 (a = 500 nm and �= 5 nm); ρp = 1050 kg m−3; ν = 0.2; and E = 1 kPa.
The solid and dashed lines are the real and imaginary parts of Z/E from numerical solutions
of the full multi-phase electrokinetic model.

The response Z/E is also affected by polarization and relaxation of the diffuse
double layer. This is especially evident for particles with thick double layers and
high ζ -potentials, a situation in which the back-field of the polarized double layer
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is strong (Gibb & Hunter 2000). For example, in figure 6(a) with κa =1 and
|ζ | � 2kT /e, the real part of Z/E increases with frequency, and the imaginary
part changes sign between approximately 2 and 30 kHz. These changes occur at
frequencies above the reciprocal ion diffusion relaxation time τ−1

i , which represents
the maximum frequency that the diffuse double layer is capable of following the
external field (DeLacey & White 1981). The increase in the real part of Z/E indicates
that the back-field decreases with increasing frequency, thereby reducing the so-called
retardation experienced by the particle.

The sign change of the imaginary part of Z/E indicates that the double-layer
polarization lags the applied field when the frequency is above τ−1

i . For particles with
κa � 1, the back-field is weak, because relaxation via diffusion across a thin double
layer is fast. In the panels with κa = 5, 10 and 50 in figure 6, maxima in the real part
of Z/E with respect to |ζ | are evident. These can lead to ambiguity in determining
the ζ -potential from the steady response (Hill & Ostoja-Starzewski 2008; Wang &
Hill 2008). However, by measuring the frequency spectrum of Z/E (or the mobility
μd = −iωZ/E), it may be easier to unambiguously ascertain the correct ζ -potential.
This approach has been useful for interpreting electroacoustic measurements of the
dynamic mobility (Hunter & O’Brien 1997).

Finally, figures 7 and 8, respectively, show the influence of hydrogel permeability �2

for small and large values of κa. The Brinkman screening length � has a significant
influence on the hydrodynamic coupling between the fluid and polymer skeleton.
Earlier studies (Hill & Ostoja-Starzewski 2008; Wang & Hill 2008) have demonstrated
that the polymer displacement at steady state is practically independent of � for
incompressible hydrogels but varies significantly for compressible hydrogels due to
an adverse electro-osmotic-flow-induced pressure gradient, particularly when κa � 1.
Note that the Brinkman screening length also affects the draining time.

When κa � 1 (figure 7), the Brinkman screening length � is most effective in changing
the reciprocal draining time τ−1

d . Accordingly, as � increases, the frequency range
exhibiting a quasi-steady incompressible elastic response decreases, and eventually
disappears, with Z/E transferring directly from the quasi-steady compressible plateau
to the viscous-stress- and inertial-stress-dominated regimes. When κa � 1 (figure 8), �

significantly changes the amplitude of the quasi-steady compressible plateau. Similar
to the steady displacement (Hill & Ostoja-Starzewski 2008; Wang & Hill 2008),
decreasing the permeability increases the magnitude of the adverse tangential pressure
gradient, which, in turn, increases the particle displacement.

4. Electroacoustics and dynamic electrophoretic mobility
4.1. Electroacoustic reciprocal relation

Here we establish the connection between the electroacoustic properties of hydrogel–
colloid composites and the dynamic electric-field-induced response of a single
particle addressed in § 3. Following O’Brien (1988, 1990), our analysis is applicable
for composites with arbitrary particle concentration. The macroscopic momentum,
mass and charge conservation equations and suspension constitutive equations from
O’Brien (1990) can be directly applied to hydrogel–colloid composites, since the
elasticity of the polymer does not invalidate the macroscopic equations. However,
the validity of the electroacoustic reciprocal relation needs to be reviewed because of
hydrogel viscoelasticity. Comparing (A7) in O’Brien (1990) with (4.3) here, we see that
elastic stresses produce an additional term in the integral for deriving the reciprocal
relation. With a reciprocal relation, the governing equations given by O’Brien (1990)
are significantly simplified.



378 M. Wang and R. J. Hill

100 102 104 106 108

0

0.001

0.002

0.003

0.004

0.005

–
Z

/E
 (

n
m

 (
V

 c
m

–
1
)–

1
)

1 10

1 10

50

50

100

100
5

5

0

0.004

0.008

0.012

0.016

1 10

1 10

50

50

100

100

5

5

0

0.002

0.004

0.006

0.008

0.010

0.012

–
Z

/E
 (

n
m

 (
V

 c
m

–
1
)–

1
)

10
–1

10
–2

10
–3

10
–4

10
–5

10
–6

10
–7

10
0

10
2

10
4

10
6

10
8

| Z
/E

 | 
(n

m
 (

V
 c

m
–

1
)–

1
) 10

–1

10
–2

10
–3

10
–4

10
–5

10
–6

10
–7

10
0

10
2

10
4

10
6

10
8

| Z
/E

 | 
(n

m
 (

V
 c

m
–

1
)–

1
)

1 10

1 10

50

50

100

1005

5

0

0.01

0.02

0.03

0.04

1
10

1 10

50

50

100

100

5

5

(a) κa = 1, ζe/(kT) = –1

100 102 104 106 108

Frequency (Hz)

(c) κa = 10, ζe/(kT) = –1

100 102 104 106 108

Frequency (Hz)

(d) κa = 10, ζe/(kT) = –4

100 102 104 106 108

(b) κa = 1, ζe/(kT) = –4

Figure 7. Frequency spectra of Z/E for various Brinkman screening lengths �= 1, 5, 10, 50
and 100 nm with scaled ζ -potentials −ζe/(kT ) = 1 and 4; and scaled reciprocal double-layer
thickness κa =1 and 10. All other parameters are the same as in figure 6. The solid and dashed
lines are the real and imaginary parts of Z/E from numerical solutions of the full multi-phase
electrokinetic model.

Electroacoustic signals originate from perturbations to an equilibrium base state.
To linear order, these perturbations satisfy

εsεo∇2ψ ′ = −ρe′, (4.1a)

−iωn′
j = −∇ · j j , (4.1b)

−iωρf u = ∇ · T f − ρe′∇ψ0 − ρe0∇ψ ′ − η�−2(u + iωv), (4.1c)

0 = ∇ · u, (4.1d )

0 = ∇ · T e + η�−2(u + iωv), (4.1e)

where the perturbed ion fluxes are

j j = −Dj ∇n′
j − zjeDj (kT )−1n′

j ∇ψ0 − zjeDj (kT )−1n0
j ∇ψ ′ + n0

j u. (4.1f )
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Figure 8. Frequency spectra of Z/E for various Brinkman screening lengths �= 1, 5, 10, 50
and 100 nm with scaled ζ -potentials −ζe/(kT ) = 1 and 4; and scaled reciprocal double-layer
thickness κa = 100 and 1000. All other parameters are the same as in figure 6. The solid and
dashed lines are the real and imaginary parts of Z/E from numerical solutions of the full
multi-phase electrokinetic model.

Primes denote perturbed quantities, and the superscript ‘0’ denotes the equilibrium
base state. The local current density in a harmonically oscillating external field
is (DeLacey & White 1981; O’Brien 1986, 1988)

i =

N∑
j=1

j j zj e + iωεoεs∇ψ ′ (4.2)

and satisfies ∇ · i = 0.
Following O’Brien (1988, 1990), we consider an integral over a representative

volume V enclosed by a surface A,

V −1

∫
A

[
u1 · T f

2 − iωv1 · T e
2 − i1ψ

′
2 −

N∑
j=1

kT

n0
j

n′
j2

(
j j1 − n0

j u1

)]
· n̂ dA (4.3)
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for two systems ‘1’ and ‘2’, where n̂ is an outward unit normal. From the linearly
perturbed equations and Gauss’s divergence theorem, the integral above is

V −1

∫
Vh

[
2ηe f

1 : e f

2 − 2iωμe e
1 : e e

2 + η�−2(u1 + iωv1) · (u2 + iωv2)

+

N∑
j=1

kT

Djn
0
j

(
j j1 − n0

j u1

)
·
(

j j2 − n0
j u2

)]
dV

− iωV −1

∫
Vh

[
λ(∇ · v1)(∇ · v2) + ρf u1 · u2 + εoεs(∇ψ ′

1) · (∇ψ ′
2) +

N∑
j=1

kT

n0
j

n′
j1n

′
j2

]
dV

+ V −1
∑

p

∫
Ap

[
u1 · T f

2 − iωv1 · T e
2 − i1ψ

′
2 −

N∑
j=1

kT

n0
j

n′
j2

(
j j1 − n0

j u1

)]
· n̂ dA, (4.4)

where e f =(1/2)[∇u + (∇u)T ] and e e = (1/2)[∇v + (∇v)T ]. Note that
∑

p indicates
a sum over all the particles enclosed by A; Ap is the particle surface within and
intersecting A; and Vh is the hydrogel volume excluding particles enclosed by A.
According to O’Brien (1990), exchanging indices ‘1’ and ‘2’ in (4.4) does not change
the integral.

If the surface A is large enough to contain many particles, and its radius of
curvature is everywhere greater than the length scales associated with fluctuations
of the perturbed quantities, it is a ‘macroscopic boundary’ and can be divided into
portions that are small enough to neglect their curvature but large enough to average
the perturbed quantities (O’Brien 1979). Also, for an incompressible fluid, we need to
ensure that the size of A is smaller than the sound wavelength (O’Brien 1988). With
these constraints, and an assumption of statistical homogeneity, (4.3) is

〈u〉1 · ∇〈p〉2 + 〈i〉1 · 〈E〉2, (4.5)

where the angle brackets denote volume averages,

〈·〉 ≡ V −1

∫
V

(·) dV. (4.6)

Only terms that grow with r contribute to the integral in (4.3) over the macroscopic
surface A, and consequently the second and fourth terms in (4.3) are negligibly small.
Surprisingly, although the polymer displacement v and elastic stress tensor T e enter
the integral in (4.3), they do not contribute to (4.5).

Since disturbances to the hydrogel–colloid composite can only be introduced
through external electric fields and sound waves (pressure gradients), the
electroacoustic constitutive relations are the same as for colloidal dispersions, i.e.

〈U〉 = α∇〈p〉 + μd〈E〉 and 〈i〉 = γ ∇〈p〉 + K∗〈E〉, (4.7)

where α, μd , γ and K∗ are composite transport properties: K∗ is the complex
conductivity and μd is the particle dynamic electrophoretic mobility. Note that 〈U〉
is the particle velocity averaged over all particles in V (O’Brien et al. 2003); it is
connected to the average fluid velocity 〈u〉 via the mass-averaged momentum

〈ρ0〉ū ≡ 〈ρu〉 = ρf 〈u〉 + (ρp − ρf )φ〈U〉, (4.8)

where 〈ρ0〉 is the equilibrium composite density; ρ is the position dependent local
density; and φ is the particle volume fraction.
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Setting 〈E〉1 = ∇〈p〉2 = 0 for the two systems that differ only by the boundary
conditions due to external fields and noting that (4.5) is independent of an exchange
of indices, it follows that

〈u〉2 · ∇〈p〉1 = 〈i〉1 · 〈E〉2. (4.9)

Therefore, from the macroscopic momentum conservation equation (O’Brien 1990,
§ 3), ū = 0 if ∇〈p〉 =0, and together with (4.7)–(4.9) we have

γ = ρ−1
f (ρp − ρf )φμd. (4.10)

This is the same as O’Brien’s formula for colloidal dispersions (O’Brien 1990, § 5), so
his subsequent analysis for particulate suspensions is applicable to hydrogel–colloid
composites. Accordingly, the elasticity introduced by the polymer skeleton only affects
the electroacoustic response through the dynamic electrophoretic mobility

μd = −iωZ/E, (4.11)

with all other macroscopic relations the same as for Newtonian colloidal dispersions.
One concern with electroacoustic characterization of hydrogel–colloid composites

is whether the pressure fluctuations in an ESA experiment are measurable. In
the next sections we therefore compare the dynamic electrophoretic mobilities
of particles in hydrogels and Newtonian fluids at the operating frequencies of
commercial electroacoustic instruments. Noteworthy is that the mobility for hydrogel
composites has a comparable amplitude to those of Newtonian dispersions, but
with characteristics that are sensitive to the shear modulus of the polymer skeleton.
Moreover, in the relevant frequency range, the response for particles with κa � 1 can
be captured with the following analytical solution of the electrokinetic model.

4.2. High-frequency boundary-layer approximation

In this section we derive an approximate expression for the frequency dependent
response Z/E when κa � 1. The dynamics of the diffuse double layer are
calculated using the surface conduction model of O’Brien (1986), which is valid
when ω � a−2D. With a ∼ 1 μm and D ∼ 10−9 m2 s−1, the model is valid at frequencies
above the kilohertz range in which colloidal dynamics are accessed as dynamic
electrophoretic mobilities in electroacoustic experiments. We solve this problem using
the decomposition and superposition methodology in § 3. Briefly, the approximate
asymptotic coefficients for the E and Y sub-problems are calculated, and the response
Z/E is obtained by the superposition leading to (3.28). For the Y sub-problem with
κa � 1, we neglect the influence of surface charge, so the full model reduces to the
two-fluid model addressed in § 2. In this case, CY = A1, where A1 is given in (2.15a).
For the E sub-problem, we calculate the polymer displacement and fluid velocity
inside the thin double layer and match the inner and outer solutions to obtain CE .

In our earlier publication (Wang & Hill 2008), we derived a boundary-layer
approximation for the steady response Z/E given in (1.1). The contribution that
depends on the particle size, and permeability and compressibility of the hydrogel,
arises from terms in the inner solution that are O[(κa)−1] smaller than the leading-
order terms as κa → ∞. Note that hydrogel compressibility is important only if
ω � τ−1

d . Moreover, hydrogel–colloid composites with a ∼ 1 μm, � ∼ 10 nm, E ∼ 1 kPa
and ν ∼ 0.2 have a reciprocal draining time τ−1

d ∼ 1 kHz that is comparable to
the lower-frequency limit of O’Brien’s surface conduction model. Therefore, under
conditions at which the surface conduction model is valid, the hydrogel can also
be considered incompressible. Accordingly, with ω � τ−1

d it is reasonable to neglect
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the O[(κa)−1] terms in the inner solution. This tremendously simplifies the resulting
expression for Z/E.

As shown by O’Brien (1988), perturbations to the equilibrium ion concentrations
in the inner and outer regions are negligible at the frequencies of interest for
electroacoustics, so they do not enter the fluid momentum equation. Therefore, the
perturbed electrostatic potential ψ ′ satisfies Laplace’s equation outside the equilibrium
diffuse double layer. Accordingly, in the outer region

ψ ′ = −rE cos θ − a3Pr−2E cos θ, (4.12)

where P is the dipole strength. Analysis of conduction within a thin surface
layer (O’Konski 1960) gives

P =
(1 − iω′) − (2Du − iω′εp/εs)

2(1 − iω′) + (2Du − iω′εp/εs)
, (4.13)

where ω′ = ωεsεo/σ
∞; σ ∞ =

∑N

j=1 z2
jn

∞
j Dje

2/(kT ) is the bulk conductivity; and
Du = σ s/(σ ∞a) is the Dukhin number (Lyklema 1995). The connection between
the surface conductivity σ s and the ζ -potential is addressed below (Lyklema 1995;
Hunter 2001).

Adopting standard boundary-layer scaling (Pozrikidis 1996), the fluid and polymer
momentum conservation equations (radial and tangential directions) in the inner
region in which κ(r − a) � 1 are

−p,r − ρe0ψ ′
,r = 0, (4.14a)

−a−1p,θ + ηuθ,rr − ρe0a−1ψ ′
,θ − η�−2(uθ + iωvθ ) = 0, (4.14b)

(2μ + λ)vr,rr + (μ + λ)(a sin θ)−1(vθ sin θ),rθ + η�−2(ur + iωvr ) = 0, (4.14c)

μvθ,rr + η�−2(uθ + iωvθ ) = 0, (4.14d )

with fluid continuity equation

ur,r + (a sin θ)−1(uθ sin θ),θ = 0. (4.14e)

Note that the equilibrium charge density ρe0 = −κ2εsεoζ exp[−κ(r − a)] when
|ζ | � kT /e and κa � 1 (Hunter 2001), and fluid inertia has been neglected inside the
double layer, since it is important only beyond the gigahertz range (Hill et al. 2003b).
For simplicity, we addresses the inner problem when |ζ | � kT /e before considering
higher ζ -potentials.

Since p and ψ ′ both vary on the length scale of the particle size a, to leading order
they are radially invariant in the inner region. Therefore, (4.14a) gives p = p̂E cos θ ,
where p̂ is a constant. By setting uθ = ûθ (y)E sin θ and vθ = v̂θ (y)E sin θ , where y = r −
a, the tangential equations (4.14b) and (4.14d) become

ηûθ,yy − η�−2(ûθ + iωv̂θ ) = −a−1p̂ − ζκ2εsεo(1 + P ) exp(−κy), (4.15)

μv̂θ,yy + η�−2(ûθ + iωv̂θ ) = 0. (4.16)
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With boundary conditions v̂θ = ûθ =0 at y = 0 and finite v̂θ and ûθ as y → ∞, the
solutions are

ûθ = iωεsεoζ (1 + P )(μ − iωη)−1[exp(−κy) − 1] − μc1η
−1 exp(−sy)

+ p̂μ[ηa(μ − iωη)s2]−1 + μκ2εoεsζ (1 + P )[η(μ − iωη)(s2 − κ2)]−1 exp(−κy),

(4.17)

v̂θ = −εsεoζ (1 + P )(μ − iωη)−1[exp(−κy) − 1] + c1 exp(−sy) − p̂[a(μ − iωη)s2]−1

− κ2εoεsζ (1 + P )[(μ − iωη)(s2 − κ2)]−1 exp(−κy), (4.18)

where s2 = (μ − iωη)(μ�2)−1 with Re(s) > 0. The no-slip boundary conditions at y =0
require

c1 = p̂[(μ − iωη)s2a]−1 + κ2εsεoζ (1 + P )[(μ − iωη)(s2 − κ2)]−1. (4.19)

For the inner solution to be finite as y → ∞, the terms that are linear and quadratic
in y must be neglected. Integrating (4.14e) gives ur = ûr (y)E cos θ , where

ûr = −2a−1

∫ y

0

ûθ (y
′) dy ′

= 2εsεoζ (1 + P )[κa(μ − iωη)]−1{iω + μκ2[η(s2 − κ2)]−1}[exp(−κy) − 1]

− 2μc1(ηsa)−1[exp(−sy) − 1]. (4.20)

Note that setting ω = 0 recovers the steady solutions derived in earlier works (Hill
2006a; Wang & Hill 2008).

Finally, integrating (4.14c) gives vr = v̂r (y)E cos θ , where

v̂r = c2 exp(−ny) − a1(n
2 − κ2)−1 exp(−κy) − a2(n

2 − s2)−1 exp(−sy)

+ a3[n
−2 − (n2 − κ2) exp(−κy)] + a4[n

−2 − (n2 − s2) exp(−sy)] (4.21)

with n2 = −iωη[�2(2μ + λ)]−1 and Re(n) > 0,

a1 = −(μ + λ)κεsεoζ (1 + P )[a(2μ + λ)(μ − iωη)]−1[1 + κ2(s2 − κ2)−1], (4.22a)

a2 = (μ + λ)sc1[a(2μ + λ)]−1, (4.22b)

a3 = −ηεsεoζ (1 + P )[κa�2(2μ + λ)(μ − iωη)]−1{iω + μκ2[η(s2 − κ2)]−1}, (4.22c)

a4 = μc1[�
2sa(2μ + λ)]−1, (4.22d )

and c2 is chosen to ensure v̂r = 0 at y = 0.
In the outer region, the governing equations are the same as the two-fluid model in

§ 2, giving

u = AE
1 ∇(r−2 E · er ) +

2∑
j=1

BE
j ∇ × [h(Kjr)E × er ], (4.23a)

v = mAE
1 ∇(r−2 E · er ) + AE

2 ∇[h(kr)E · er ] +

2∑
j=1

MjB
E
j ∇ × [h(Kjr)E × er ], (4.23b)

where k, m, Kj and Mj (j =1, 2) are also the same as in § 2. Note that the asymptotic
coefficient CE = AE

1 is determined by matching the inner and outer solutions.
From (2.2a), the pressure in the outer region is

p = iωρf AE
1 r−2E cos θ − iωη�−2AE

2 h(kr)E cos θ, (4.24)
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so

p̂ = iωρf AE
1 a−2 − iωη�−2AE

2 h(ka). (4.25)

Matching the inner solutions as y → ∞,

uθ = −iω(μ − iωη)−1εsεoζ (1 + P )E sin θ and ur = 0, (4.26a)

vθ = (μ − iωη)−1εsεoζ (1 + P )E sin θ and vr = 0, (4.26b)

to the outer solutions (4.23a) and (4.23b) as r → a gives

AE
1 = a3εsεoζ (1 + P )(−iωημ−1ΘE + Γ E)[(μ − iωη)H ]−1, (4.27a)

where, from b and βj (j = 1,2) in § 2,

ΘE = −μη−1{ib2(M1 − M2)(β1 + i)(β2 + i)

+ (b2 + 2ib − 2)[M1β
2
1 (β2 + i) − M2β

2
2 (β1 + i)]}, (4.27b)

Γ E = (b2 + 2ib − 2)[β2
1 (β2 + i) − β2

2 (β1 + i)]. (4.27c)

Note that the matching is achieved by neglecting asymptotically small terms as
κa → ∞ and �/a → 0.

Next, we establish the connection between the Dukhin number Du and ζ -potential
for hydrogels to determine P . This relation is not the same as for Newtonian
electrolytes because the polymer skeleton modulates the convective transport of
ions (O’Brien 1986). Following a similar procedure for obtaining (4.17), the tangential
velocity in the double layer as κa → ∞ is

uθ = iωεsεo(μ − iωη)−1(ψ0 − ζ )∇sψ
′, (4.28)

where ∇s is the tangential gradient operator.
Although (4.28) is derived for |ζ | � kT /e, the vanishing of the equilibrium

electrostatic potential ψ0 outside the double layer permits (4.28) to be generalized
for any ζ -potential. Therefore, using (4.28) and the definition of Du and σ s (O’Brien
1986; Lyklema 1995), for symmetrical z–z electrolytes with |ζ | � kT /e, we find

Du = (z2 + 3m)(2κa)−1[ζe/(kT )]2, (4.29)

where m = −2iωεsεo[3D(μ − iωη)]−1(kT /e)2 and D =D1 =D2 is the ion diffusivity.
For general electrolytes and higher ζ -potentials (O’Brien 1986), we find

Du =
n∞

i z2
i Di

√
2∑N

j=1 z2
jn

∞
j Dj

(
1 +

3mi

z2
i

)
exp[−eziζ/(2kT )]

κia
(4.30)

when exp[−eziζ/(2kT )] � 1. Here, the subscript ‘i’ refers to the counterion with
highest charge and

mi = −2iωεsεo[3Di(μ − iωη)]−1(kT /e)2, (4.31)

κ2
i =

(
z2

i e
2n∞

i

)
(εsεokT )−1. (4.32)

Finally, superposing the Y and E sub-problems and accounting for fluid and
particle inertia (Appendix D), the dynamic electric-field-induced response is

Z/E = εsεoζ (1 + P )(μ − iωη)−1G, (4.33)

where

G =
−iωημ−1ΘE + Γ E

(Θ + Γ )/2 − iωH (ρp − ρf )/(3ρf )
. (4.34)
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Figure 9. Frequency spectra of the dynamic electrophoretic mobility μd = −iωZ/E for
Young’s moduli E = 0.1, 1 and 10 kPa with Poisson’s ratio ν = 0.2. Other parameters are
the same as in figure 2. The solid and dashed lines are the real and imaginary parts of μd

from numerical solutions of the full multi-phase electrokinetic model. The dash-dotted lines
(barely visible because they overlap numerical solutions) are the real parts of μd from the
analytical approximation (4.33); the imaginary parts of μd from (4.33) are not shown because
they overlap the numerical solutions. Note that the spectrum with a finite (real) low-frequency
plateau is the mobility μd

∗ = −iω(Z/E)∗ for the same particles dispersed in a Newtonian
electrolyte without polymer (Hill et al. 2003a).

Recall that this approximation is valid for frequencies ω/(2π) � a−2D, ω/(2π) � τ−1
d

and ω/(2π) � κ2ηρ−1
f with κa � 1. Noteworthy is that (4.33) produces the same

mobility as O’Brien’s formula (3.31) evaluated with a complex shear viscosity
η∗ = η+iμω−1. Thus, while our independent analysis made no assumptions concerning
hydrogel compressibility and hydrodynamic permeability in the inner region, where
electro-osmotic flow is active, the dynamics at frequencies above the reciprocal
draining time τ−1

d are found to occur with negligible relative motion of the fluid
and polymer phases.

4.3. Comparison of numerical and analytical approximate solutions

The amplitude of the dynamic electrokinetic response Z/E was demonstrated in § 3.4
to become vanishingly small at high frequencies. The results below demonstrate that
Z/E decays with frequency in a manner in which the dynamic mobility μd = −iωZ/E

is finite at the frequencies used in commercial electroacoustic instruments. In § 4.1
we showed that O’Brien’s macroscopic electroacoustic equations (O’Brien 1990)
can be applied to hydrogel–colloid composites. Accordingly, a close connection
was established between the electroacoustic signal (pressure fluctuations) in ESA
measurements and the dynamic mobility. This motivated the derivation in § 4.2,
leading to the analytical approximation (4.33) for the high frequencies encountered in
electroacoustic experiments.

The dynamic electrophoretic mobilities for representative hydrogel–colloid
composites from (4.33) and numerical computations are presented in figure 9.
Because our calculations of the dynamic mobility neglect interactions, the results
are suitable for composites with low particle volume fractions. Spectra are shown
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with Young’s modulus spanning three decades. Note that the spectrum with a finite
plateau (real part) at low frequencies is the mobility for the same particles dispersed
in a Newtonian electrolyte without polymer; this was calculated using the MPEK
software package (Hill et al. 2003a). At this large value of κa = 500, the analytical
approximation (4.33) compares extremely well with the numerical calculations. Note
also that the real parts (dash-dotted and solid lines) depart very slightly when the
amplitude vanishes at lower frequencies, and the imaginary parts are practically
identical at all frequencies.

Noteworthy is that the real part of μd can be distinguished from μd
∗ only at

megahertz frequencies when Young’s modulus of the skeleton is greater than about
10 kPa. However, the imaginary part is very sensitive to the elastic modulus at about
1MHz, suggesting that at a given fixed frequency, or in a narrow range of frequencies,
an electroacoustic experiment could probe the kinetics of polymer gelation and aging.
Recall that commercial electroacoustic instruments operate at frequencies between
0.3 MHz and 11 MHz (Hunter 1998). Clearly, to probe the elastic modulus of hydrogel
skeletons with lower moduli, a wider frequency range – extending to lower frequen-
cies – is required. Nevertheless, many important hydrogels have an elastic modulus
greater than 10 kPa; e.g. reverse thermoresponsive poly(N-isopropylacrylamide) gels
at 8 wt% and 40◦C have E ≈ 170 kPa (Takigawa et al. 1997), and polyacrylamide
gels at 0.8 % w/v have E ≈ 35 kPa (Takigawa et al. 1996), so the real and imaginary
parts of their electroacoustic response at megahertz frequencies would be particularly
sensitive to changes in the elastic modulus. Note also that because the electroacoustic
response is prominent at frequencies much higher than the reciprocal draining time,
the response only reflects changes in the shear modulus, not the accompanying
changes in hydrodynamic permeability.

Figure 10 compares numerical calculations of the dynamic electrophoretic mobility
with our analytical boundary-layer approximation (4.33) with κa = 50 (top panels)
and κa = 1000 (bottom panels). This approximation is accurate when κa = 1000 for
all the experimentally accessible ζ -potentials and frequencies, and even when κa = 50
the approximation deviates only slightly from the exact calculations at the highest ζ -
potentials and frequencies. Thus, as expected, our analytical solution is demonstrated
to be valid for small Dukhin numbers Du. The foregoing dynamics are independent
of the Brinkman screening length and Poisson ratio (with fixed shear modulus), as
is clearly evident when applying O’Brien’s dynamic mobility formula (3.31) evaluated
with a complex shear viscosity η∗ = η + iμω−1. Note that (4.33) does not capture the
compressible dynamics at frequencies below the reciprocal draining time (see § 3),
where the dynamic mobility is vanishingly small.

5. Summary
We extended the multi-phase electrokinetic model of Hill & Ostoja-Starzewski

(2008) and Wang & Hill (2008) to calculate the dynamic response of a charged,
spherical colloid embedded in an uncharged hydrogel subjected to harmonically
oscillating electric field. We began by solving the two-fluid model of Levine &
Lubensky (2001) exactly and compared our analytical solution with approximations
widely adopted in the microrheolgy literature. We then developed a computational
methodology to solve the full multi-phase electrokinetic model by linearly perturbing
an equilibrium base state governed by the nonlinear Poisson–Boltzmann equation.

Our exact analytical solution of the two-fluid model of Levine & Lubensky (2001)
agrees well with their approximate solution when fluid and particle inertia can be
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Figure 10. Frequency spectra of the dynamic electrophoretic mobility μd = −iωZ/E for
various scaled ζ -potentials −ζe/(kT ) = 1, 2, 4, 6 and 8: (a, b) κa = 50 and (c, d ) ka =
1000. All other parameters are the same as in figure 6. The solid lines are the (a, c) real and
(b, d ) imaginary parts of μd from numerical solutions of the full multi-phase electrokinetic
model, and the dashed lines are μd from the analytical boundary-layer approximation (4.33).

neglected. At frequencies above the reciprocal draining time, where the skeleton
dynamics are incompressible, our solution shows that inertial influences are captured
by the unsteady Stokes equations with a complex shear viscosity.

The electric-field-induced particle response, defined as the ratio of the displacement
to the electric field strength, was obtained by superposing two simpler sub-problems
to satisfy the particle equation of motion. Compressible and incompressible hydrogel
skeletons were addressed independently. By adopting an analytical solution in the far
field, we achieved accurate numerical solutions over an extraordinarily wide range of
frequencies, for a wide range of the experimentally accessible parameter space.

In addition, we examined the dynamic electrophoretic mobility, defined as the
ratio of the particle velocity to the electric field strength, and its connection
to electroacoustic diagnostics for characterizing hydrogel–colloid composites.
Noteworthy was an analytical boundary-layer approximation for thin double layers
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(κa � 1) that compares well with numerics at the ultrasonic frequencies adopted in
commercial electroacoustic instruments.

The electrical response of a colloidal particle in a hydrogel often exhibits an
ostensible transition from quasi-steady compressible to incompressible viscoelastic
dynamics – both characterized by distinct plateaus in the real part of the frequency
spectrum – as the frequency passes through the reciprocal draining time τ−1

d .
At frequencies above τ−1

d , the response is the same as in a Newtonian electrolyte
with a complex shear viscosity. Accordingly, the dynamics are practically independent
of the hydrogel permeability, since the incompressible fluid and polymer skeleton
move together. At frequencies below τ−1

d , however, the dynamics of compressible
and incompressible hydrogels are qualitatively different. Hydrogel compressibility
can increase the electric-field-induced particle displacement by an order of magnitude
relative to the displacement in a perfectly incompressible skeleton with the same shear
modulus. In general, the response depends on Poisson’s ratio, Young’s modulus and
Brinkman screening length of the hydrogel, as well as physicochemical characteristics
of the inclusions, including size and charge. For inclusions with thick double
layers (κa � 1) and high ζ -potentials (ζ � 2kT /e), the electrical response spectrum
is influenced by polarization and relaxation of the diffuse double layer.

The present theory provides a rigorous foundation for interpreting two classes
of electric-field-based diagnostic experiments involving hydrogel–colloid composites.
Such experiments probe both the physicochemical characteristics of the charged
inclusions and the viscoelastic rheology of the hydrogel. Our calculations demonstrate
that the particle displacement at low frequencies could be directly measured using
active electrical microrheology. At higher frequencies, however, the particle
displacements are too small (sub-nanometre) to register with particle-tracking
microscopy, so electroacoustic techniques are necessary to measure instead the
dynamic electrophoretic mobility. Accordingly, we showed that the macroscopic
relations for colloidal dispersions developed by O’Brien (1990) can be directly applied
to hydrogel–colloid composites. Our calculations of the dynamic electrophoretic
mobility demonstrate that the strength of electroacoustic signals from hydrogel–
colloid composites are comparable to those from Newtonian electrolytes without a
polymer skeleton. The high frequencies in such experiments guarantee incompressible
skeleton dynamics, so the response is independent of skeleton permeability and
intrinsic compressibility.

Finally, we note that many synthetic hydrogels and, particularly, biopolymer
networks are charged, and even ideally uncharged gels (e.g. polyacrylamide) become
weakly charged due to hydrolysis (e.g. Kizilay & Okay 2003). The influence of charge
on the susceptibility and electrical response of inclusions in charged networks will be
addressed in a forthcoming publication (Mohammadi & Hill, submitted).

RJH gratefully acknowledges support from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Canada Research Chairs programme;
and MW thanks the Department of Chemical Engineering, McGill University, for
financial support through the William H. Gauvin Fellowship and an Eugenie Ulmer
Lamothe Award. We also wish to thank three anonymous referees for constructive
comments and identifying several valuable additional references.

Appendix A. Incompressible hydrogel skeletons
For incompressible hydrogels, the second term in (3.2e) is singular because λ → ∞

as ν → 1/2. However, similar to Hill & Ostoja-Starzewski (2008), the displacement can
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be expanded as a power series in a small parameter ε = 1 − 2ν, i.e. v = v0 + εv1 + · · · ,

which, after substituting into (3.2e) and collecting terms of like order in ε, gives

∇ · v0 = 0 (A 1a)

at O(ε−1) and

μ[∇2v0 + ∇(∇ · v1)] + η�−2(u + iωv0) = 0 (A 1b)

at O(1). Note that −μ∇ · v1 in (A 1b) can be replaced by a pressure, so (A 1a) and
(A 1b) are equivalent to the unsteady Stokes equations with a body force η�−2(u+iωv0).

Since ∇ · v0 = 0, the leading-order displacement may be constructed as

v0 = ∇ × ∇ × [g(r)X] + Y . (A 2)

Taking the curl of (A 1b) and (3.2c), the fluid momentum and incompressible polymer
elasticity equations become

−iωρf L1f,r = ηL2f,rrr − η�−2(L1f,r + iωL1g,r )

−
N∑

j=1

zjer
−1{n̂jψ

0
,r − n0

j,r [ψ̂ − r(E/X)]}, (A 3)

0 = μL2g,rrr + η�−2(L1f,r + iωL1g,r ) (A 4)

with boundary conditions

g,r = (a/2)(Y/X) and g,rr = (1/2)(Y/X) at r = a, (A 5)

g,r → 0 and g,rr → 0 as r → ∞. (A 6)

It is expedient to write (A 3) and (A 4) as

L2

(
f,rrr

g,rrr

)
+M L1

(
f,r

g,r

)
=

(
η−1

∑N

j=1 zjer
−1{n̂jψ

0
,r − n0

j,r [ψ̂ − r(E/X)]}
0

)
, (A 7)

where

M =

(
iωρf η−1 − �−2 −iω�−2

ημ−1�−2 iωημ−1�−2

)
. (A 8)

Functions f (r) and g(r) are decoupled by diagonalizing M as

M = R

(
λ1 0

0 λ2

)
R −1, (A 9)

where λ1 and λ2 are the eigenvalues of M , and the columns of R are the corresponding
eigenvectors. Substituting M into (A 7) and introducing(

h1(r)

h2(r)

)
≡ R −1

(
f (r)

g(r)

)
(A 10)

give

L2

(
h1,rrr

h2,rrr

)
+ L1

(
λ1h1,r

λ2h2,r

)
= R −1

(
η−1

∑N

j=1 zjer
−1{n̂jψ

0
,r − n0

j,r [ψ̂ − r(E/X)]}
0

)
,

(A 11)
which replaces (3.6), (3.8) and (3.9) in the main text for compressible hydrogels. Note
that f,r in the perturbed ion-conservation equations (3.11) is expressed as a linear
combination of h1 and h2 according to (A 10).



390 M. Wang and R. J. Hill

Appendix B. Far-field asymptotics for compressible hydrogel skeletons
The far-field boundary conditions in § 3.2 cannot be applied directly, because

more information concerning the functional forms of the solutions as r → ∞ is
required to avoid numerical instabilities. Beyond the equilibrium double layer, i.e.
where r � a + κ−1, the equilibrium electrostatic potential ψ0 and ion concentrations
n0

j decay rapidly (exponentially) to their far-field values (ψ0 → 0 and n0
j → n∞

j ) as
r → ∞, and the equations for the perturbations simplify to two decoupled sets. The
first set comprises the Poisson and ion-conservation equations,

εsεo∇2ψ ′ +

N∑
j=1

zjn
′
j e = 0, (B 1a)

iωn′
j + zjeDjn

∞
j (kT )−1∇2ψ ′ + Dj ∇2n′

j = 0, (B 1b)

and the other is identical to (2.2a)–(2.2c) in § 2.
In contrast with the electrokinetic model, these equations have an analytical

solution. We begin by considering the first set of equations involving the perturbed
potential ψ ′′ and ion concentrations n′

j and then establish the connection between
the asymptotic forms of f,r , g1 and g2 given in § 3.2 and the exact solution of the
two-fluid model in § 2.

B.1. Far-field decays of ψ̂ and n̂j

Equations (B 1a) and (B 1b) can be written as

εsεoL1ψ̂ +

N∑
j=1

zj n̂j e = 0, (B 2a)

Dj L1n̂j − zje
2Djn

∞
j (εsεokT )−1

N∑
k=1

zkn̂k + iωn̂j = 0, (B 2b)

or

L1

⎛
⎜⎜⎜⎜⎜⎜⎝

n̂1

n̂2

...

n̂N

ψ̂

⎞
⎟⎟⎟⎟⎟⎟⎠

+ P

⎛
⎜⎜⎜⎜⎜⎜⎝

n̂1

n̂2

...

n̂N

ψ̂

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (B 3)

where

P =
e2

εsεokT

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

iωεsεokT

e2D1
− n∞

1 z2
1 −n∞

1 z1z2 . . . −z1n
∞
1 z2 − n∞

1 z1zN 0

−n∞
2 z2z1

iωεsεokT

e2D2
− n∞

2 z2
2 . . . −n∞

2 z2zN 0

...
...

. . .
...

...

−n∞
NzNz1 −n∞

NzNz2 . . . iωεsεokT

e2DN
− n∞

Nz2
N 0

z1kT /e z2kT /e . . . zNkT /e 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B 4)
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Similar to the incompressible problem, matrix P can be diagonalized as

P = Q

⎛
⎜⎜⎜⎝

γ1 0 . . . 0

0 γ2 . . . 0
...

...
. . .

...

0 0 . . . γN+1

⎞
⎟⎟⎟⎠ Q −1, (B 5)

where γk (k = 1, 2, . . . , N + 1) are the eigenvalues of P , and the kth column of Q is
the corresponding eigenvector. By setting⎛

⎜⎜⎜⎜⎜⎜⎝

χ1

χ2

...

χN

χN+1

⎞
⎟⎟⎟⎟⎟⎟⎠

≡ Q −1

⎛
⎜⎜⎜⎜⎜⎜⎝

n̂1

n̂2

...

n̂N

ψ̂

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B 6)

we obtain a set of simpler equations

L1χk + γkχk = 0 (k = 1, 2, . . . , N + 1), (B 7)

where χk = χk(r). Using standard techniques (Lamb 1945; Oestreicher 1951;
MacRobert 1967; Temkin & Leung 1976; Markov 2005), the solutions of (B 7)
are

χk(r) = Dkh(
√

γkr) when γk �= 0, (B 8a)

χk(r) = Dkr
−2 when γk = 0, (B 8b)

where Dk are unknown constants. From (B 4), P has only one γk = 0, and to ensure
decaying solutions as r → ∞, Im(

√
γk) > 0 for all γk �= 0.

Equation (B 7) demonstrates that χk are decoupled in the far field. Therefore n̂j

and ψ̂ can be constructed by inverting (B 6). Dividing the far-field expressions for
χk by their first derivative eliminates the constants Dk , and therefore the boundary
conditions for χk as r → ∞ are

χk − [h(
√

γkr)/h′(
√

γkr)]χk,r = 0 at r = rmax when γk �= 0, (B 9)

χk + (r/2)χk,r = 0 at r = rmax when γk = 0, (B 10)

where rmax is the maximum radial extent of the numerical calculations in which
a � r � rmax . Note that the kth column of Q corresponding to γk =0 has only one
non-zero entry, which equals one, and the dipole strength of the electrostatic potential
is

DX = r2
maxχk(rmax) when γk = 0 as rmax → ∞. (B 11)

B.2. Far-field decays of f,r , g1 and g2

Since the electrical body force vanishes far from the particle, i.e. where r � a + κ−1,
the fluid velocity and polymer displacement in § 2 can be used to construct f,r (r),
g1(r) and g2(r) in the far field. These provide boundary conditions at r = rmax for the
numerical solution in the region in which a � r � rmax with rmax � a + κ−1.

From § 3.2, the radial and tangential components of the fluid velocity are

ur = [−2r−1f,r − iω(Y/X)]X cos θ, (B 12a)

uθ = [−r−1f,r − f,rr − iω(Y/X)](−X sin θ), (B 12b)
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and the radial and tangential components of the polymer displacement are

vr = [g1 + g2 − (Y/X)]X cos θ, (B 12c)

vθ = [g1 − (Y/X)](−X sin θ). (B 12d )

Equating these to the exact solution in § 2 with X = Y gives

f ∞
,r = A1r

−2 − B1h(K1r) − B2h(K2r), (B 13a)

g∞
1 = mA1r

−3 + A2r
−1h(kr) +

2∑
j=1

MjBjKj [(Kjr)
−1h(Kjr) + h′(Kjr)], (B 13b)

g∞
2 = −3mA1r

−3 + A2k[(kr)−1h(kr) − h′(kr)]

+

2∑
j=1

MjBjKj [(Kjr)
−1h(Kjr) − h′(Kjr)], (B 13c)

where the superscript ‘∞’ denotes far-field asymptotic solutions. Similar to the
numerical calculation of electrophoretic mobilities in Newtonian electrolytes, the
foregoing far-field asymptotic solutions each differ from their exact solution by
a multiplicative constant. Therefore, the boundary conditions at r = rmax for the
numerical computation of f,r (r), g1(r) and g2(r) are

f,r − (f ∞
,r /f ∞

,rr )f,rr = 0, (B 14a)

f,rr − (f ∞
,rr/f

∞
,rrr )f,rrr = 0, (B 14b)

g1 − (g∞
1 /g∞

1,r )g1,r = 0, (B 14c)

g2 − (g∞
2 /g∞

2,r )g2,r = 0, (B 14d )

and the asymptotic coefficient

CX = A1f,r (rmax)/f
∞
,r (rmax) as rmax → ∞. (B 15)

Appendix C. Far-field asymptotics for incompressible hydrogel skeletons
The combined fluid and O(1) polymer equations of motion as r → ∞ are

∇2

(
u
v0

)
+ ∇

(
−η−1p

∇ · v1

)
+ M

(
u
v0

)
= 0, (C 1)

where M is defined in (A 8). Diagonalizing M according to (A 9) and left-multiplying
by R −1, which is defined in (A 9), yield two decoupled equations

∇2wj + ∇qj + λ1wj = 0 (j = 1, 2), (C 2)

where (
w1

w2

)
= R −1

(
u
v0

)
and

(
q1

q2

)
= R −1

(
−η−1p

∇ · v1

)
. (C 3)

An incompressible fluid and polymer skeleton require ∇ · wj =0 (j = 1, 2), so the
solutions are

wj = ∇Φj + ∇ × Ψ j + W j (j = 1, 2), (C 4)

where Φj are scalar potentials; Ψ j = Ψj eφ are vector potentials; and(
W 1

W 2

)
= R −1

(
−iωY

Y

)
. (C 5)
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Substituting the relations above into (C 2) and taking the curl yields

∇2Ψ j + λjΨ j = 0 (j = 1, 2), (C 6)

and incompressibility requires ∇2Φi = 0, so

Φj = A′
j r

−2Y cos θ, (C 7a)

Ψj = B ′
jh(Kjr)Y sin θ, (C 7b)

where A′
j and B ′

j (j =1, 2) are constants to match the boundary conditions at r = a,

and Kj =
√

λj with Im(Kj ) > 0 to ensure vanishing polymer displacement and fluid
velocity as r → ∞. The radial and tangential components of wj = ∇×∇×[hj (r)Y ]+W j

are

wjr = [−2A′
j r

−3 + 2B ′
j r

−1h(Kjr) + (Wj/X)]X cos θ, (C 8a)

wjθ = {A′
j r

−3 + B ′
jKj [(Kjr)

−1h(Kjr) + h′(Kjr)] + (Wj/X)}(−X sin θ). (C 8b)

Matching at r = rmax gives

h∞
j,r = A′

j r
−2 − B ′

jh(Kjr) as rmax → ∞, (C 9)

where the four constants A′
j and B ′

j (j =1, 2) are obtained from the boundary
conditions at r = a with X = Y as(

h∞
1,r (a)

h∞
2,r (a)

)
= R −1

(−iωa/2

a/2

)
(C 10a)

and (
h∞

1,rr (a)

h∞
2,rr (a)

)
= R −1

(−iω/2

1/2

)
. (C 10b)

Finally, the far-field boundary conditions for hj at r = rmax are

hj,r − (h∞
j,r/h∞

j,rr )hj,rr = 0 and hj,rr − (h∞
j,rr/h∞

j,rrr )hj,rrr = 0 (j = 1, 2), (C 11)

and the asymptotic coefficient

CX =

2∑
j=1

R1jA
′
jhj,r (rmax)/h∞

j,r (rmax) as rmax → ∞, (C 12)

where R11 and R12 are elements of R .

Appendix D. Point-force representation of a particle in an uncharged
hydrogel matrix

Here we relate the net force on a spherical colloid in an uncharged hydrogel to the
strength of a point force that produces the same far-field disturbances. The particle
undergoes harmonic translation in an otherwise stationary hydrogel. The strength of
the point force is obtained from reciprocal relations similar to Hill et al. (2003a).
However, in addition to the Lorentz reciprocal relation for fluid in a domain S (Kim &
Karrila 1991),∫

∂S

(u′ · T f − u · T f ′) · n̂ dA =

∫
S

(u′ · ∇ · T f − u · ∇ · T f ′) dV, (D 1)
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a similar reciprocal relation, known in solid mechanics as the Betty theorem (Barber
2003), is required. This is∫

∂S

(μ′v′ · T e − μv · T e′) · n̂ dA =

∫
S

(μ′v′ · ∇ · T e − μv · ∇ · T e′) dV, (D 2)

provided λ = λ′.
Consider a large domain Ω with boundary ∂Ω and outward unit normal n̂ that

encloses an oscillating sphere centred at position r1 with radius a (system 1) and
a fixed point force centred at position r2 (system 2). Note that |r1 − r2| � a + κ−1.
Furthermore, the sphere occupies volume Ω1 and undergoes oscillatory translation
with velocity −iωZ. The corresponding surface and outward unit normal are denoted
∂Ω1 and n̂1, respectively.

The divergence of elastic and hydrodynamic stresses for system 1 (∇ · T f

1 and ∇ · T e
1)

are given by (3.20b) and (3.20c), respectively. For system 2,

∇ · T f

2 = η∇2u2 − ∇p2 = −iωρf u2 + η�−2(u2 + iωv2) + Ff δ(r2), (D 3a)

∇ · T e
2 = μ∇2v2 + (λ + μ)∇(∇ · v2) = Feδ(r2) − η�−2(u2 + iωv2), (D 3b)

where δ(r) is the Dirac-delta function and Ff and Fe are the point forces exerted on
the fluid and elastic medium, respectively.

Applying the Lorentz reciprocal relation to the volume enclosed by ∂Ω1 and ∂Ω

gives ∫
∂Ω

(
u1 · T f

2 − u2 · T f

1

)
· n̂ dA −

∫
∂Ω1

(
u1 · T f

2 − u2 · T f

1

)
· n̂1 dA

=

∫
Ω−Ω1

(
u1 · ∇ · T f

2 − u2 · ∇ · T f

1

)
dV. (D 4)

Because u ∼ r−3 as r → ∞, the integral over ∂Ω on the left-hand side of (D 4) vanishes
when Ω is sufficiently large. Therefore, substituting (3.20b) and (D 3a) into (D 4) gives

−
∫

∂Ω1

(
u1 · T f

2 − u2 · T f

1

)
· n̂1 dA = u1(r2) · Ff

+

∫
Ω−Ω1

[
iωη�−2

(
u1 · v2 − u2 · v1

)
+ u2 · ∇ · T m

1

]
dV. (D 5)

Inside the particle, u1 = −iωZ, and since |r1 − r2| � a + κ−1, u2(|x − r1| � a) can be
considered constant. Therefore, applying Gauss’s divergence theorem to the integral
over ∂Ω1 on the left-hand side of (D 5) gives∫

∂Ω1

(
u1 · T f

2 − u2 · T f

1

)
· n̂1 dA = −iωZ ·

∫
Ω1

∇ · T f

2 dV − u2(r1) ·
∫

∂Ω1

T f

1 · n̂1 dA

= −u2(r1) ·
[
ω2ρf Vp Z +

∫
∂Ω1

T f

1 · n̂1 dA

]
, (D 6)

where Vp is the particle volume. Substituting (D6) into (D 5) gives

Ff · u1(r2) = u2(r1) ·
[
ω2ρf Vp Z +

∫
∂Ω1

T f

1 · n̂1 dA

]

−
∫

Ω−Ω1

[iωη�−2(u1 · v2 − u2 · v1) + u2 · ∇ · T m
1 ] dV. (D 7)
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Similarly, for the elastic displacements, applying the same procedure as above, but
with the Betty theorem, yields

Fe · v1(r2) = v2(r1) ·
∫

∂Ω1

T e
1 · n̂1 dA −

∫
Ω−Ω1

η�−2(u1 · v2 − u2 · v1) dV, (D 8)

where v2(|x − r1| � a) may be considered constant.
Again, since u1(r2) = −iωv1(r2) and u2(r1) = −iωv2(r1), multiplying (D 8) by −iω

and adding (D 7) gives

F · u1(r2) = u2(r1) ·
[
ω2ρf Vp Z +

∫
∂Ω1

(T f

1 + T e
1) · n̂1 dA

]
−

∫
Ω−Ω1

u2 · ∇ · T m
1 dV, (D 9)

where F = Fe + Ff is the total point force. Note that the volume integral on the
right-hand side of (D 9) can be factored to give∫

Ω−Ω1

u2 · ∇ · T m
1 dV = −u2(r1) ·

∫
∂Ω1

T m
1 · n̂1 dA (D 10)

because ∇ · T m is exponentially small when |x−r1| � a+κ−1, and u2 can be considered
constant where ∇ · T m is finite.

Substituting (D 10) into (D9) yields

F = ω2ρf Vp Z +

∫
∂Ω1

(
T e

1 + T f

1 + T m
1

)
· n̂1 dA. (D 11)

The integral over ∂Ω1 on the left-hand side of (D 11) is the total force on the sphere,
which according to Newton’s second law must equal the acceleration of its mass
−Vpρpω2 Z, so the strength of the point force is

F = ω2Vp Z(ρf − ρp). (D 12)

In other words, similar to bare particles (Mangelsdorf & White 1992) and particles
with polymer coatings (Hill et al. 2003a) dispersed in Newtonian electrolytes, the
acceleration of the mass of fluid displaced by a finite-sized inclusion in a hydrogel
must be added to the force on a point particle producing the same far-field fluid
velocity and polymer displacement disturbances. Note that the foregoing analysis
neglects the mass of the polymer.

Appendix E. Numerical solution of the field equations
The field equations are solved according to the methodology outlined in § 3. First, the

Poisson–Boltzmann equation is efficiently solved using the adaptive mesh algorithm
developed by Hill et al. (2003a), and then various equilibrium quantities and their
derivatives are computed. Next, the linearly perturbed equations are solved. Before this
calculation, the equations are transformed to simplify the numerics. Matrix algebra
and eigenvalue calculations involved in the transformations are performed using
BLAS and LAPACK routines (Anderson et al. 1999). Independent computational
strategies are adopted for calculating the linearized perturbations for incompressible
and compressible hydrogel skeletons. Asymptotic coefficients and physical quantities
are then constructed from the numerical solutions. The following discusses in further
detail how the perturbed problems are solved.

For incompressible skeletons, the perturbed equations are transformed to the
decoupled forms outlined in Appendix A, and the resulting differential equations
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are discretized using a second-order central difference scheme and solved using a
banded matrix solver. Solutions are then iteratively improved using a moving mesh
method based on the methodology of Hill et al. (2003a). When the solution has
converged, asymptotic coefficients from the far-field asymptotic analysis undertaken
in Appendix B are obtained. The far-field solution is facilitated using LAPACK.
Our program to compute the response for incompressible skeletons is written entirely
in C.

For compressible skeletons, the perturbed solutions oscillate in space with several
wavelengths, e.g. the construction of the fluid velocity and polymer displacement in
§ 2 involves three wavelengths. The second-order central difference scheme with the
moving mesh method of Hill et al. (2003a) does not converge. We therefore modified
a general-purpose boundary value problem software package TWPBVPL (Cash &
Mazzia 2006), which solves the differential equations using fourth-, sixth- and eighth-
order methods with hybrid mesh selection, to solve the linearly perturbed problem.
The second-order ordinary differential equations (ODEs) presented in § 3.2, i.e. (3.6)
and (3.8)–(3.11), are arranged as a set of first-order ODEs,

x,r = C · x + q, (E 1)

where x =[n̂1, n̂1,r , . . . , n̂N , n̂N,r , ψ̂, ψ̂,r , f,r , f,rr , f,rrr , f,rrrr , g1, g1,r , g2, g2,r ]
T

is a vector of unknown functions; C is a coefficient matrix; and q is a vector. Note
that x, C and q all depend on radial position r . To convert n̂j (j = 1, 2, . . . , N) and

ψ̂ to χk (k = 1, 2, . . . , N + 1) in x, we introduce a square transformation matrix

T =

(
Q̃

−1
0

0 I

)
(E 2)

and a transformed vector of unknowns

y = T · x. (E 3)

Here, Q is given in (B 5), and the tilde denotes a matrix augmentation operation that
increases the size of an n × n matrix M (with elements Mij ) to a 2n × 2n augmented
matrix,

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

M11 0 M12 0 . . . M1n 0

0 M11 0 M12 . . . 0 M1n

...
...

...
...

. . .
...

...

Mn1 0 Mn2 0 . . . Mnn 0

0 Mn1 0 Mn2 . . . 0 Mnn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (E 4)

Equation (E 1) is then transformed to

y,r = (T C T −1) · y + T · q, (E 5)

where the far-field boundary conditions at r = rmax given in Appendix B can be
directly applied. The original boundary conditions at the particle surface r = a in
matrix form

B · x = β (E 6)

are transformed to

(B T −1) · y = β. (E 7)
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The transformed equation (E 5), together with their boundary conditions, i.e. (E 7)
as boundary conditions at r = a and far-field boundary conditions presented in
Appendix B at r = rmax , are first solved with a second-order central difference
scheme (Ascher, Mattheij & Russell 1988) on the non-uniform mesh of the equilibrium
solution. With this initial guess, TWPBVPL is used to calculate y by adjusting the
mesh and applying higher-order methods. The far-field boundary conditions are
calculated using multiple precision packages GMP (Granlund 2007), MPFR (Fousse
et al. 2007) and MPC (Enge et al. 2007) to avoid round-off errors, and various matrix
operations are performed using LAPACK and BLAS. When the error tolerance or
the maximum number of iterations is achieved, asymptotic coefficients are extracted.
The program combines codes written in C and FORTRAN.
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Thévenot, C., Khoukh, A., Reynaud, S., Desbrières, J. & Grassl, B. 2007 Kinetic aspects,
rheological properties and mechanoelectrical effects of hydrogels composed of polyacrylamide
and polystyrene nanoparticles. Soft Matt. 3, 437–447.

Valentine, M. T., Dewalt, L. E. & Ou-Yang, H. D. 1996 Forces on a colloidal particle in a polymer
solution: a study using optical tweezers. J. Phys., Condens. Matt. 8, 9477–9482.

Verwey, E. J. W. & Overbeek, J. T. G. 1948 Theory of Stability of Lyophobic Colloids . Elsevier.

Wang, K. L., Burban, J. H. & Cussler, E. L. 1993 Hydrogels as separation agents. Adv. Polym.
Sci. 110, 67–79.

Wang, M. & Hill, R. J. 2008 Electric-field-induced displacement of charged spherical colloids in
compressible hydrogels. Soft Matt. 4, 1048–1058.

Yamaguchi, N., Chae, E.-S., Zhang, L., Kiick, K. L. & Furst, E. M. 2005 Rheological
characterization of polysaccharide-poly(ethylene glycol) star copolymer hydrogels.
Biomacromolecules 6, 1931–1940.

Yao, S. H., Hertzog, D. E., Zeng, S. L., Mikkelsen, J. C. & Santiago, J. G. 2003 Porous glass
electro-osmotic pumps: design and experiments. J. Colloid Interface Sci. 268, 143–153.

Yao, S. H. & Santiago, J. G. 2003 Porous glass electro-osmotic pumps: theory. J. Colloid Interface
Sci. 268, 133–142.

Ziemann, F., Radler, J. & Sackmann, E. 1994 Local measurement of viscoelastic moduli of
entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys. J. 66,
2210–2216.


